ABOUT JUMPING IN A CHEMICAL REACTION
DOI:
https://doi.org/10.52754/16947452_2022_1_66Keywords:
The model equation of a chemical reaction, Cauchy problem, singular point, asymptoticAbstract
The article considers the Cauchy problem for an ordinary nonlinear differential equation of the first order. An additional feature of the Cauchy problem under consideration is that this equation contains a small parameter. It is required to establish the asymptotics of the solution of the Cauchy problem as this small parameter tends to zero. The investigated Cauchy problem is a mathematical model of a chemical reaction. The solution of the Cauchy problem has a singular point at which the solution quickly passes from one state to another. However, the solution is continuous in the considered interval. Previously, an asymptotic solution was constructed in the first zone, now we will construct an asymptotic solution in the second zone.
References
Ashwani, K. Kapila Asymptotic Treatment of Chemically Reacting Systems [Text] / K. Ashwani, 1983.
Алымкулов, К. The method of uniformization and justification of Lighthill method (in Russian) [Text] / К. Алымкулов // Izvestia АN Kyrg. SSR, 1981, № 1.
Alymkulov, K. Perturbed Differential Equations with Singular Points in book “ Recent Studies in Perturbation Theory” [Text] / K. Alymkulov, D.А. Tursunov // Chapter 1, Edited by Dimo I. Uzunov, Publisher InTech, 2017.
Алымкулов, К. Асимптотика решения задачи химической реакции со стационарной достижимостью [Текст] / К. Алымкулов, К.Г. Кожобеков // Вестник Жалал Абадского университета, 2019. – № 3 (42).
Ильин, А.М. Асимптотические методы в анализе [Текст] / А.М. Ильин, А.Р. Данилин – М.: ФИЗМАТЛИТ. – 2009.
Коул, Дж. Методы возмущений в механике жидкости [Текст] / Дж. Коул – М.: Мир, 1972.
Carrier, C.F. Boundary lave problems in applied mathematics [Text] / C.F. Carrier // Comm. Appl. Math. – 1954. – V.7.
Kevorkian, J. Perturbation methods in applied mathematics [Text] / J. Kevorkian, J.D Cole // Springer, (1985).
Де Брейп, Н. Г. Асимптотические методы в анализе [Текст] / Н.Г. Де Брейп – М.: ИЛ, 1961.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Osh State University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.