DISCONTINUOUS SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Authors

  • Bektur Azimov Osh State University
  • Burkanbek Turdubekov Osh State University
  • Ayperi Zhumabaeva Osh State University

DOI:

https://doi.org/10.52754/16947452_2022_4_199

Keywords:

Hopf equation, divergent form, quasilinear equation, partial differential equation, weak discontinuity, strong discontinuity

Abstract

The article examines the famous model equation of Hopf. Hopf equations - quasiline homogeneous differential equations in private production first order. Equation Hopf represents its own one-dimensional mathematical model of gas motion, particles that do not interact with each other. The specificity of the Hopf equation is that even if the results of this equation are uninterrupted, its solution will be fragmented. If the decision is uninterrupted, but the production is fragmented, then the decision is weakly fragmented. The purpose of the study was to examine the Hoppa equation solution. Determine the weak and strong gaps in the solution. Applicable methods: method of transformations, method of divergent forms.

References

Alymkulov, K. Perturbed Differential Equations with Singular Points in book [Text] / K. Alymkulov, D.A. Tursunov // Recent Studies in Perturbation Theory. Chapter 1. Edited by Dimo I. Uzunov, Publisher InTech, 2017.

Уизем, Дж.Б. Линейные и нелинейные волны [Текст] / Дж. Уизем; перевод с англ. В.В. Жаринова ; под ред. А.Б. Шабата. - Москва : Мир, 1977.

Построение точных решений некоторых уравнений гиперболического типа, содержащих разрыв, распространяющийся по неоднородному фону / Ю.А.Криксин [и др.] // Препринты ИПМ им. М.В.Келдыша. 2018. № 17. 14 с. doi:10.20948/prepr-2018-17.

Hopf E., The partial differential equation // Communiations on Pure and Applied Mathematiсs. 1950, 3,

Олейник О.А. Разрывные решения нелинейных дифференциальных уравнений // Успехи математических наук, 1957, № 12,

Polyanin A.D., Zaitsev V.F., Moussiaux A. Handbook of first order partial differential equations // Differential and Integral Equations and Their Appliations 2002 vol.1.

. Ладонкина М.Е., Неклюдова О.А., Тишкин В.Ф. Исследование влияния лимитера на порядок точности решения разрывным методом Галеркина // Мат. модел., 2012, т. 24, № 12,

Published

2022-12-20

How to Cite

Azimov, B., Turdubekov, B., & Zhumabaeva, A. (2022). DISCONTINUOUS SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS. Bulletin of Osh State University, (4), 199–205. https://doi.org/10.52754/16947452_2022_4_199

Most read articles by the same author(s)