SOLUTION OF THE FIRST BOUNDARY PROBLEM FOR A THIRD ORDER EQUATION WITH MINOR TERMS, A METHOD FOR CONSTRUCTING THE GREEN'S FUNCTION

Authors

  • Yusupjon Apakov .I. Romanovsky Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan
  • Rakhmatilla Umarov Namangan Civil Engineering Institute

DOI:

https://doi.org/10.52754/16947452_2022_1_73

Keywords:

Differential equation, third order, multiple characteristics, asymmetric condition, regular solution, uniqueness, existence, Green's function

Abstract

The paper considers the first boundary value problem in a rectangular domain for an inhomogeneous partial differential equation of the third order with constant coefficients at lower terms. The uniqueness of the solution of the stated problem is proved by the method of energy integrals. Using the method of separation of variables, the solution of the problem is sought as a product of two functions X(x) and Y(y). To determine X(x), we obtain a third-order ordinary differential equation with three boundary conditions on the boundary of the segment [a, b], and for Y(y), we obtain a second-order ordinary differential equation with two boundary conditions on the boundary of the segment [c, d]. The Green's function method is used to construct solutions to these problems. Estimates for the resolvent and Green's function are obtained. When substantiating the uniform convergence of the solution, the non-zero “small denominator” is used.

References

Юлдашев, Т.К. Обратная задача для одного интегро-дифференциального уравнения Фредголма в частных производных третьего порядка [Текст] / Т.К. Юлдашев // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, - Самара, 2014. - № 1(34)

Рыжов, О.С. Асимптотическая картина обтекания тел вращения со звуковым потоком вязкого и теплопроводящего газа [Текст] / О.С. Рыжов // Прикл. Матем. и механ., - Москва, 1965. - Т. 29. Вып. 6.

Диесперов, В.Н. О функции Грина линеаризованного вязкого трансзвукового уравнения [Текст] / В.Н. Диесперов // Журнал вычисл. матем. и матем. физики. - Москва, 1972. - Т. 12. - № 5.

Block, H. Sur les equations lineaires aux derives parielles a carateristiques multiples [Текст] / H. Block // Ark. Mat. Astron. Fus. Note 1, - 1912, 7(13), - pp. 1-34; Note 2, 1912, ibid. 7(21),- pp. 1-30; Note 3, 1912 - 1913, ibid. 8(23).

Del Vicchio, E. Sulleequazioni , [Текст] / E. Del Vicchio // Memorie R. Accad. Sci. Ser.2. - Torino, 1915, 66.

Cattabriga, L. Potenziali di linea e di dominio per equazioni non paraboliche in due variabilia caratteristiche multiple [Текст] / L. Cattabriga // Rendiconti del seminario matimatico della univ. di Padava. - 1961, 31.

Джураев, Т.Д, Об автомодельном решении одного уравнения третьего порядка с кратными характеристиками [Текст] / Т.Д. Джураев, Ю.П. Апаков // Вестник Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, - Самара, 2007. - № 2(15).

Джураев Т.Д, Апаков Ю.П. К теории уравнения третьего порядка с кратными характеристиками, содержащего вторую производную по времени [Текст] / Т.Д. Джураев, Ю.П. Апаков // Украинский математический журнал. – Киев, 2010, том 62. № 1.

Apakov, Yu. P. Construction of Green's Function for One Problem of Rectangular Region [Текст] / P. Yusufjon Apakov // Malaysian Journal of Mathematical Sciences, - Kuala- Lumpur, 2010. - Vol. 4(1). - № 1.

Apakov, Yu. P. On a Method for Solving Boundary Problems for Third-order Equation with Multiple Characteristics [Текст] / P. Yusufjon Apakov // Modern Aspects of the Theory of Partial Differential Equations. Operator Theory: Advances and Applications, Springer. -Basel, 2011. -Vol. 216,

Apakov, Yu.P. On Unique Solvability of Boundary-Value Problem for a Viscous Transonic Equation [Текст] / P. Yusufjon Apakov // Lobachevski Journal of Mathematics.2020 Vol, 41, № 9,

Apakov, Yu.P., On a boundary problem to third order PDE with multiple characteristics Nonlinear Analysis: Modeling and Control. -Vilnius, 2011. - Vol. 16. -№ 3.

Апаков, Ю.П. О решении краевой задачи для уравнения третьего порядка с кратными характеристиками [Текст] / Ю.П. Апаков // Украинский математический журнал. -Киев. 2012. Т.64. № 1.

Апаков, Ю.П. О решении краевой задачи для уравнения третьего порядка с помощью функции Грина [Текст] / Ю.П. Апаков, А.Х. Жураев // Узбекский математический журнал. 2011, №3,

Apakov, Yu.P. Third boundary-value problem for a third-order diferential equation with multiple characteristics [Текст] / P. Yusufjon Apakov, A. Kh. Zhuraev. // Ukrainian Math-ematical Journal. Springer, New York, febuary, 2019 -Vol. 70, № 9.

Yuldashev, T.K. Boundary value problem for third order partial integro-differential equation with a degenerate kernel [Текст] / T.K. Yuldashev, P. Yusufjon Apakov, A. Kh. Zhuraev. // Lobachevski Journal of Mathematics. 2021 Vol, 42, № 6,

Джураев, Т.Д. Краевые задачи для уравнений араболо - гиперболического типа [Текст] / Т.Д. Джураев, А. Сопуев, М. Мамажанов // Ташкент: ФАН, 1986.

Сабитов, К.Б. Задача Дирихле для уравнение смешанного типа третьего порядка [Текст] / К.Б. Сабитов //ДАН России. – Москва. 2009.-Т.427.-№5.

Балкизов, Ж.А. О представлении решения краевой задачи для неоднородного уравнения третьего порядка с кратными характеристиками [Текст] / Ж.А. Балкизов, А.Х. Кадзаков // Известия Кабардино - Балкарского научного центра РАН. - Нальчик, 2010 . - № 4.

Лукина, Г.А. Краевые задачи с интегральными граничными условиями для линеаризованного уравнения Кортевега - де Фриза [Текст] / Г.А. Лукина // Вестник Южно-Уральского государственного университета. Серия: Матем. модел. ипрограм. - Челябинск, 2011. - № 17 (234)

Шубин, В.В. Краевые задачи для уравнений третьего порядка с разрыв-ным коэффициентом [Текст] / В.В. Шубин // Вестник НГУ. Сер. Матем., мех., информ. - Новосибирск, 2012. -Т. 12. -№ 1.

Ashyraliev, A. Boundary value problem for a third order partal differential equation [Текст] / A. Ashyraliev, N. Aggez, F. Hezenci // First international conference on analysis and applied mathematics. ICAAM 2012. Gumshoe, Turkey. 18-21 October. 2012.

Кожанов, А.И. Нелокальные задачи с интегральным условием для дифференциальных уравнений третьего порядка [Текст] / А.И. Кожанов, А.В. Дюжева // Вестн. Сам. гос. техн. ун-та. Сер. Физ.- мат. науки, 2020. Т. 24, № 4.

Тихонов, А.Н. Уравнения математической физики [Текст] / А.Н. Тихонов, А.А. Самарский - М.: «Наука». 1966 г.

Published

2022-03-31

How to Cite

Apakov, Y. ., & Umarov , R. . (2022). SOLUTION OF THE FIRST BOUNDARY PROBLEM FOR A THIRD ORDER EQUATION WITH MINOR TERMS, A METHOD FOR CONSTRUCTING THE GREEN’S FUNCTION. Bulletin of Osh State University, (1), 73–92. https://doi.org/10.52754/16947452_2022_1_73