SINGULARLY PERTURBED DIRIСHLET PROBLEM WITH A SINGULAR POINT

Authors

  • Ybadylla Bekmurza uulu Osh State University

DOI:

https://doi.org/10.52754/16948610_2024_2_35

Keywords:

Dirichlet problem, ordinary differential equation, singularly perturbed, boundary layer, maximum principle, singular point

Abstract

In many fields of science, complex problems are described by differential equations with small parameters. A famous physicist is credited with the phrase: "A phenomenon is not physical if it lacks a small parameter." Differential equations (ordinary or partial derivatives) with a small parameter at the highest derivative are called singularly perturbed. Such equations arise in electrical and radio engineering, mechanics, hydro and aerodynamics, etc. The article is devoted to the construction of the asymptotics of solving the singularly perturbed Dirichlet problem with a singularly point. First, an asymptotic expansion of the solution of the problem is constructed over the entire interval, then the residual term of this expansion is estimated.

References

Shiromani R., Shanthi V., Ramos H. A computational method for a two-parameter singularly perturbed elliptic problem with boundary and interior layers // Mathematics and Computers in Simulation. 2023, Vol. 206, pp. 40–64. DOI: https://doi.org/10.1016/j.matcom.2022.11.003

Liu Z., Wei J., Zhang J. A new type of nodal solutions to singularly perturbed elliptic equations with supercritical growth // Journal of Differential Equations. 2022. Vol. 339. pp. 509–554. DOI: https://doi.org/10.1016/j.jde.2022.08.028

Smith J. Singular Perturbation Theory (Cambridge University press, Cambridge, 1985).

Nayfeh A.H. Perturbation Methods, Pure and Applied Mathematics (Wiley-Inter science Series of Texts, Monographs and Tracts, New York, 1973).

Tursunov D. A. and Bekmurza uulu Ybadylla Asymptotic Solution of the Robin Problem with a Regularly Singular Point // Lobachevskii Journal of Mathematics, 2021, Vol. 42, No. 3, pp. 613–620. DOI: https://doi.org/10.1134/S1995080221030185

Турсунов Д.А. Асимптотическое разложение решения обыкновенного дифференциального уравнения второго порядка с тремя точками поворота // Тр. ИММ УрО РАН. 2016. Т. 22. № 1. С. 271–281.

Bekmurza uulu Ybadylla, Kozhobekov K.G., Tursunov D.A. Asymptotics of solutions of boundary value problems for the equation y'' +xp(x)y' – q(x)y = f // EURASIAN MATHEMATICAL JOURNAL. Vol. 13, No 3 (2022), 82 – 91. DOI: https://doi.org/10.32523/2077-9879-2022-13-3-82-91

Kozhobekov K.G., Tursunov D.A. Asymptotic solution of a singularly perturbed Cauchy problem with a turning point // Journal of Mathematical Sciences. 2021. Т. 254. № 6. С. 788-792. DOI: https://doi.org/10.1007/s10958-021-05340-3

Kozhobekov K.G., Tursunov D.A., Omaralieva G.A. Asymptotics of the solution of bisingular boundary value problems with a biboundary layer // Журнал Лобачевского по математике. 2023. Т. 43. № 11. С. 3198-320. DOI: https://doi.org/10.1134/S1995080222140190

Protter M.H., Weinberger H.F., Maximum-Principles in Differential Equations (Diff.Equat.Ser. Prentice-Hall, Inc. X, N. J., 1967).

Бекмурза Уулу, Ы. Өзгөчө чекитке ээ болгон сингулярдык козголгон чектик маселенин чыгарылышынын асимптотикасы / Ы. Бекмурза Уулу // Вестник Ошского государственного университета. – 2023. – No. 4. – P. 87-95. – DOI: 10.52754/16948610_2023_4_10. – EDN: DQLNIP. DOI: https://doi.org/10.52754/16948610_2023_4_10

Published

2024-06-27

How to Cite

Bekmurza uulu , Y. (2024). SINGULARLY PERTURBED DIRIСHLET PROBLEM WITH A SINGULAR POINT. Bulletin of Osh State University, (2), 354–360. https://doi.org/10.52754/16948610_2024_2_35