THE GENERALIZATION OF TITCHMARSH’S CONVOLUTION THEOREM TO FUNCTIONS OF SEVERAL VARIABLES
DOI:
https://doi.org/10.52754/16947452_2022_4_228Keywords:
Tichmarsh convolution theorem, completely continuous symmetrical lineal operator, own functions, own numbers, fundamental theorem 1 of Gilbert -Schmidt, its analogue, Fourier series, transition method for convolution equationsAbstract
Аs known, among the widely known facts of mathematical analysis the so-called Tichmarshao convolution theorem that the equality of zeros of functions of one variable on a finite segment entails their vanishing on segments whose sum of lengths equals the length of the end segment of the convolution definition occupies a certain place. In this article, this theorem is generalized to functions of several variables. Also the definite analogue theorems of Gilbert- Schmidt, occupying function into a Fourier series in terms of the eigenfunctions of the named operator is installed. In our case, the convolution is shown to be more accurate, and namely, the uniform convergence of the series to the convolution function against the known convergence in the mean [1], in a Hilbert space L2. When establishing the main results of the article, along with the known facts, recalled above, in the theory of operator equations with completely continuous symmetric linear operators, the method proposed by the author in [1], the so-called transition method for the equations convolutions is used.
References
Сражидинов А. Метод перехода для уравнений свертки и некоторые его применения [Текст] / А.Сражидинов // Известия вузов Кыргызстана.– 2021.- №3.
Titchmarsh E.C. The zeros of certain integral functions / E.C. Titchmarsh //Proc.London Math.Soc.-1926. Vol.25, №2.
Титчмарш Е. Введение в теорию интегралов Фурье [Текст] / Е Титчмарш – М., Л.:ОГИЗ, 1948.
Микусинский Я. Операторное исчисление [Текст] / Я.Микусинский М.: ИЛ, 1956.
Lions J.L. Supports de produits de composition/J.L.Lions //C.r.Acad.sci.Ser.A.-1951.-Vol.232.
Mikusinski J. G. Un theoreme sur le produit de composition des fonctions de plusieurs variables/ J. G. Mikusinski, C.Ryll-Nardzewski //Studia Mathemat. L3 1953,-
Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. :Учеб. для мат. спец.ун-тов, -3-е изд., перераб. [Текст] /А.Н. Колмогоров, С.В. Фомин–М.:Наука , 1972.
Петровский И.Г.Лекции по теории интегральных уравнений [Текст] / И.Г Петровский. – М.: ФИЗ.МАТ.ЛИТ., 2009,
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Osh State University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.