ON THE SOLVABILITY OF THE OPTIMIZATION PROBLEM WITH MINIMUM ENERGY UNDER BOUNDARY CONTROL OF THE OSCILLATIONAL PROCESS
ON THE SOLVABILITY OF THE OPTIMIZATION PROBLEM WITH MINIMUM ENERGY UNDER BOUNDARY CONTROL OF THE OSCILLATIONAL PROCESS
DOI:
https://doi.org/10.52754/16948645_2023_2_80Keywords:
boundary value problem, generalized solution, energy integral, functional, boundary control, optimal controlAbstract
: The paper studies the solvability of the optimization problem for oscillatory processes described by partial integro-differential equations with an integral Fredholm operator while minimizing the energy integral of the control force. The study was carried out using the concept of a generalized solution of the boundary value problem of a controlled oscillatory process. In the optimization problem, it is required to find a control that transfers the oscillatory process from one state to another given state. In the course of the study, it was established that the desired optimal control is defined as a solution to an infinite-dimensional system of Fredholm integral equations of the first kind, and sufficient conditions for the existence of a solution to this ill-posed problem were found.
References
Егоров А.И. Оптимальное управление тепловыми и диффузионными процессами - М.: Наука, 1978.-500с.
Керимбеков А., Доулбекова С.Б. О разрешимости задачи нелинейной оптимизации колебательных процессов при появлении особых управлений //Вестник Евразийского национального университета имени Л.Н.Гумилева. Серия Математика. Компьютерные науки. Механика, -2020, Т.132, №3. –С. 6-16.
Люстерник Л.А., Соболев В.И. Элементы функционального анализа.- М.: Наука, 1965.-520с.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Вестник Ошского государственного университета. Математика. Физика. Техника
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.