EXISTENCE OF QUASI-DOUBLE LINES OF THE PAIR OF DISTRIBUTIONS

Authors

DOI:

https://doi.org/10.52754/16948610_2024_4_15

Keywords:

euclidean space, Frenet’s net, cyclic net of Frenet, partial mapping, distributions, quasi-double line

Abstract

A family of smooth lines is given in the domain Ω ⸦〖 E〗_5 so that through each point X∈Ω passes one line ω^1 of the given family. A movable frame is chosen so that it was Frenet’s frame for the line ω^1 of the given family. The integral lines of the coordinate vectors fields of this frame form a Frenet’s net. On the tangent to the line ω^3 a point  F_3^(2 ) is defined in an invariant way. When the point Х moves in the domain Ω, the point F_3^(2 ) describes its domain Ω_3^2  ⸦〖 E〗_5. In this way we get the partial mapping   f_3^2:Ω→Ω_3^2 such that f_3^2 (X)=F_3^2. It is considered the three dimensional distributions   ∆_3=(X,e ⃗_2,e ⃗_4,e ⃗_5) and   ∆_3^'=f_3^2 (∆_3 ). Definition. In the tangent to the line d⸦〖 ∆〗_3 at the point X and the tangent to the line d ̅=f_3^2 (d) at the point F_3^2 belong to the same three dimensional space (spanned by vectors e ⃗_2,e ⃗_4,e ⃗_5), then lines d and  d ̅ are called quasi-double lines of the pair (∆_3,〖∆'〗_3) of distributions in the partial mapping f_3^2. In the case when net of Frenet is cyclic net Frenet it is proved the necessary and sufficient conditions for lines d⸦〖 ∆〗_3  and d ̅=f_3^2 (d) to be quasi-double lines  of the pair of distributions (∆_3,〖∆'〗_3) in the partial mapping f_3^2

References

Рашевский П.К., Риманева геометрия и тензорный анализ // Москва: наука, 1967-с. 482

Схоутен И.А. Введение в новые методы дифференциальной геометрии [Текст]/ Схоутен И.А., Д. Дж. Стройк.//М.ИЛ.1948.Т.II-348.

Фиников С.П., Метод внешних форм Картана в дифференциальной геометрии [Текст]/ С.П. Фиников//М-Л.: Госттехиздат, 1948.-342.

Матиева Г., Курбанбаева Н.Н., Абдуллаева Ч.Х. E6 евклиддик мейкиндигинде f_3^2 бөлүктөп чагылтуусунун квазикошмок сызыктарынын жашашы жөнүндө// Вестник ОшГУ. Математика, Физика, Техника. 2023. №1-с. 141-152 DOI: https://doi.org/10.52754/16948645_2023_1_141

Матиева Г.// Геометрия частичных отображений сетей и распределений евклидова пространства. Ош-2003, 151с.

Published

2024-12-27

How to Cite

Kurbanbayeva , N., Seyitkazyeva , G., Sarygulova , N., & Attokurova , K. (2024). EXISTENCE OF QUASI-DOUBLE LINES OF THE PAIR OF DISTRIBUTIONS. Bulletin of Osh State University, (4), 145–149. https://doi.org/10.52754/16948610_2024_4_15