IMPACT OF MERCURY ON SEX HORMONES (LITERATURE REVIEW)
DOI:
https://doi.org/10.52754/16948610_2024_4_1Keywords:
Endocrine system, mercury, sex hormones, estrogen, progesterone, FSH, LH, prolactin, testosteroneAbstract
Mercury, a ubiquitous environmental pollutant, poses significant risks to human health, particularly through its detrimental effects on the endocrine system. Hg disrupts endocrine function through various mechanisms, including interference with hormone synthesis, receptor binding, and signal transduction pathways. Additionally, mercury exposure has been linked to disturbances in the hypothalamic-pituitary-adrenal axis, affecting stress response and cortisol production. Furthermore, emerging evidence suggests that mercury may interfere with sex hormone regulation, potentially contributing to reproductive dysfunction and developmental abnormalities. However, challenges remain in elucidating the precise dose -response relationships and mechanisms underlying these associations, particularly given the complex interactions between mercury and other environmental stressors. This review aims to provide a comprehensive overview of the current understanding of mercury’s impact on the endocrine system, encompassing both experimental findings and epidemiological evidence. Additionally, continued research is needed to better understand the long-term consequences of mercury exposures on the endocrine system and to develop targeted interventions for at risk-populations.
References
Ahmadi, S. S., Khaki, A. A., Ainehchi, N., Alihemmati, A., Khatooni, A. A., Khaki, A., & Asghari, A. (2016). Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats. Electronic physician, 8(3), 2168–2174. https://doi.org/10.19082/2168 DOI: https://doi.org/10.19082/2168
Antunes Dos Santos, A., Appel Hort, M., Culbreth, M., López-Granero, C., Farina, M., Rocha, J. B., & Aschner, M. (2016). Methylmercury and brain development: A review of recent literature. Journal of trace elements in medicine and biology: organ of the Society for Minerals and Trace Elements (GMS), 38, 99–107.
https://doi.org/10.1016/j.jtemb.2016.03.001 DOI: https://doi.org/10.1016/j.jtemb.2016.03.001
Barbosa Jr, F., (1997). Assessment of Hg exposure and dose-dependent excretion of urinary Hg in subjects from the Amazon Basin, Brazil. Journal of Trace Elements in Medicine and Biology, 11(4), 265-274. [DOI: 10.1016/s0946-672x (97)80006-8]
Chang LW. Neurotoxic effects of mercury: a review. Environ Res. 1977;14(3):329–373. DOI: https://doi.org/10.1016/0013-9351(77)90044-5
Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, et al. Methylmercury induces pancreatic beta-cell apoptosis and dysfunction. Chem Res Toxicol. 2006;19(8):1080–1085. DOI: https://doi.org/10.1021/tx0600705
Clifton II, J. C. (2007). Mercury exposure and public health. Pediatric Clinics of North America, 54(2), 237-e1. DOI: https://doi.org/10.1016/j.pcl.2007.02.005
Costa Junior, J. M. F., Silva, C. I. M. D., Lima, A. A. D. S., Rodrigues Júnior, D., Silveira, L. C. L., Souza, G. D. S., & Pinheiro, M. D. C. N. (2018). Teores de mercúrio em cabelo e consumo de pescado de comunidades ribeirinhas na Amazônia brasileira, região do Tapajós [Levels of mercury found in hair and fish consumption of riverine communities in the Tapajós region of the Brazilian Amazon]. Ciencia & saude coletiva, 23(3), 805–812. https://doi.org/10.1590/1413-81232018233. DOI: https://doi.org/10.1590/1413-81232018233.09492016
Davidson PW, Myers GJ, Weiss B. Mercury exposure and child development outcomes. Pediatrics. 2004;113(4 Suppl):1023–1029. DOI: https://doi.org/10.1542/peds.113.S3.1023
Flora, S. J., Bhadauria, S., Kannan, G. M., & Singh, N. (2007). Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. Journal of environmental biology, 28(2 Suppl), 333–347
Friberg, L., & Mottet, N. K. (1989). Accumulation of methylmercury and inorganic mercury in the brain. Biological Trace Element Research, 21, 201-206. DOI: https://doi.org/10.1007/BF02917253
Gandhi, D., (2014). Evaluation of hormonal alterations and cell damage in menstrual blood of women with abnormal uterine bleeding. International Journal of Research in Medical Sciences, 2(3), 875-880.
Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R., ... & Fenga, C. (2021). Influence of toxic metal exposure on the gut microbiota. World Academy of Sciences Journal, 3(2), 1-1. DOI: https://doi.org/10.3892/wasj.2021.90
Goldman, L. R., Shannon, M. W., & American Academy of Pediatrics: Committee on Environmental Health (2001). Technical report: mercury in the environment: implications for pediatricians. Pediatrics, 108(1), 197–205. https://doi.org/10.1542/peds.108.1.197 DOI: https://doi.org/10.1542/peds.108.1.197
Goodrich J, Wang H, Walker D, Lin X, Hu X, Alderete T, Chen Z, Valvi D, Baumert B, Rock S, Berhane K, Gilliland F, Goran M, Jones D, Conti D, Chatzi L, Postprandial Metabolite Profiles and Risk of Prediabetes in Young People: A Longitudinal Multicohort Study, Diabetes Care, 10.2337/dc23-0327, 47, 1, (151-159), (2023) DOI: https://doi.org/10.2337/dc23-0327
Goodson, W. H., 3rd, Lowe, L., Carpenter, D. O., Gilbertson, M., Manaf Ali, A., Lopez de Cerain Salsamendi, A., Lasfar, A., Carnero, A., Azqueta, A., Amedei, A., Charles, A. K., Collins, A. R., Ward, A., Salzberg, A. C., Colacci, A., Olsen, A. K., Berg, A., Barclay, B. J., Zhou, B. P., Blanco-Aparicio, C., … Hu, Z. (2015). Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 36 Suppl 1(Suppl 1), S254–S296. DOI: https://doi.org/10.1093/carcin/bgv039
Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. Lancet (London, England), 368(9553), 2167–2178. https://doi.org/10.1016/S0140-6736(06)69665-7 DOI: https://doi.org/10.1016/S0140-6736(06)69665-7
Grotto, D., (2009). Evaluation of toxic effects of mercury exposure on sertoli cell function in humans. Toxicology Letters, 190(2), 132-138
Gundacker, C., Pietschnig, B., Wittmann, K. J., Lischka, A., Salzer, H., Hohenauer, L., & Schuster, E. (2002). Lead and mercury in breast milk. Pediatrics, 110(5), 873–878. https://doi.org/10.1542/peds.110.5.873 DOI: https://doi.org/10.1542/peds.110.5.873
Guzzi, G., & La Porta, C. A. (2008). Molecular mechanisms triggered by mercury. Toxicology, 244(1), 1-12. DOI: https://doi.org/10.1016/j.tox.2007.11.002
Häggqvist, B., Havarinasab, S., Björn, E., & Hultman, P. (2005). The immunosuppressive effect of methylmercury does not preclude development of autoimmunity in genetically susceptible mice. Toxicology, 208(1), 149–164. https://doi.org/10.1016/j.tox.2004.11.020 DOI: https://doi.org/10.1016/j.tox.2004.11.020
Harada, M., Nakachi, S., Cheu, T., Hamada, H., Ono, Y., Tsuda, T., ... & Ohno, H. (1999). Monitoring of mercury pollution in Tanzania: relation between head hair mercury and health. Science of the total environment, 227(2-3), 249-256 DOI: https://doi.org/10.1016/S0048-9697(99)00031-5
Henriques, M. C., Loureiro, S., Fardilha, M., & Herdeiro, M. T. (2019). Exposure to mercury and human reproductive health: A systematic review. Reproductive toxicology (Elmsford, N.Y.), 85, 93–103. https://doi.org/10.1016/j.reprotox.2019.02.012 DOI: https://doi.org/10.1016/j.reprotox.2019.02.012
Holsbeek, L., Das, H. K., & Joiris, C. R. (1996). Mercury in human hair and relation to fish consumption in Bangladesh. The Science of the total environment, 186(3), 181–188. https://doi.org/10.1016/0048-9697(96)05110-8 https://doi.org/10.1093/carcin/bgv039 DOI: https://doi.org/10.1016/0048-9697(96)05110-8
Hu, G., Jin, M., Lin, X., Guo, C., Zhang, L., & Sun, Z. (2010). Mercury distribution in neonatal rat brain after intrauterine methylmercury exposure. Environmental toxicology and pharmacology, 29(1), 7–11. https://doi.org/10.1016/j.etap.2009.08. DOI: https://doi.org/10.1016/j.etap.2009.08.006
Iavicoli, I., Fontana, L., & Bergamaschi, A. (2009). The effects of metals as endocrine disruptors. Journal of Toxicology and Environmental Health, Part B, 12(3), 206-223. DOI: https://doi.org/10.1080/10937400902902062
Kim, B. M., Lee, B. E., Hong, Y. C., Park, H., Ha, M., Kim, Y. J., Kim, Y., Chang, N., Kim, B. N., Oh, S. Y., Yoo, M., & Ha, E. H. (2011). Mercury levels in maternal and cord blood and attained weight through the 24 months of life. The Science of the total environment, 410-411, 26–33. https://doi.org/10.1016/j.scitotenv.2011.08.060 DOI: https://doi.org/10.1016/j.scitotenv.2011.08.060
Kirkpatrick, M., Benoit, J., Everett, W., Gibson, J., Rist, M., & Fredette, N. (2015). The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice. Neurotoxicology, 50, 170-178. DOI: https://doi.org/10.1016/j.neuro.2015.07.001
Kishi, R., et al. (2015). International Archives of Occupational and Environmental Health, 88(8), 1113-1126. DOI: 10.1007/s00420-015-1033-x
Li, G., Chan, Y. L., Wang, B., Saad, S., Oliver, B. G., & Chen, H. (2020). Replacing smoking with vaping during pregnancy: impacts on metabolic health in mice. Reproductive Toxicology, 96, 293-299. DOI: https://doi.org/10.1016/j.reprotox.2020.07.012
Li, Y., (2018). Environmental Pollution, 243(Pt B), 1257–1265. DOI: 10.1016/j.envpol.2018.09.059 DOI: https://doi.org/10.1016/j.envpol.2018.09.059
McGregor, A. J., & Mason, H. J. (1991). Occupational mercury vapour exposure and testicular, pituitary and thyroid endocrine function. Human & experimental toxicology, 10(3), 199-203. DOI: https://doi.org/10.1177/096032719101000309
Minoia C, Ronchi A, Pigatto P, Guzzi G. Effects of mercury on the endocrine system. Crit Rev Toxicol. 2009;39(6):538. DOI: https://doi.org/10.1080/10408440903057029
Miriam Varkey, I., Shetty, R., & Hegde, A. (2014). Mercury exposure levels in children with dental amalgam fillings. International journal of clinical pediatric dentistry, 7(3), 180–185. https://doi.org/10.5005/jp-journals-10005-1261 DOI: https://doi.org/10.5005/jp-journals-10005-1261
Mu, W., Chen, Y., Liu, Y., Pan, X., & Fan, Y. (2018). Toxicological effects of cadmium and lead on two freshwater diatoms. Environmental toxicology and pharmacology, 59, 152-162. DOI: https://doi.org/10.1016/j.etap.2018.03.013
Nylander M, Weiner J. Mercury and selenium concentrations and their interrelations in organs from dental staff and the general population. Br J Ind Med. 1991;48(11):729–734. DOI: https://doi.org/10.1136/oem.48.11.729
Plusquellec, P., Muckle, G., Dewailly, E., Ayotte, P., Jacobson, S. W., & Jacobson, J. L. (2007). The relation of low-level prenatal lead exposure to behavioural indicators of attention in Inuit infants in Arctic Quebec. Neurotoxicology and teratology, 29(5), 527–537. https://doi.org/10.1016/j.ntt.2007.07.002 DOI: https://doi.org/10.1016/j.ntt.2007.07.002
Rice, G. E., Ambrose, R. B., Bullock, O. R., & Swartout, J. (1997). Mercury study report to Congress. Volume 3. Fate and transport of mercury in the environment (No. PB-98-124753/XAB; EPA-452/R-97/005). Environmental Protection Agency, Research Triangle Park, NC (United States). Office of Air Quality Planning and Standards. DOI: https://doi.org/10.2172/575114
Risher, J. F., Murray, H. E., & Prince, G. R. (2002). Organic mercury compounds: human exposure and its relevance to public health. Toxicology and industrial health, 18(3), 109-160. DOI: https://doi.org/10.1191/0748233702th138oa
Saniewska, D., Beldowska, M., Beldowski, J., Saniewski, M., Kwaśniak, J., & Falkowska, L. (2010). Distribution of mercury in different environmental compartments in the aquatic ecosystem of the coastal zone of the Southern Baltic Sea. Journal of environmental sciences (China), 22(8), 1144–1150. https://doi.org/10.1016/s1001-0742(09)60230-8 DOI: https://doi.org/10.1016/S1001-0742(09)60230-8
Sears, M. E., Kerr, K. J., & Bray, R. I. (2012). Arsenic, cadmium, lead, and mercury in sweat: a systematic review. Journal of environmental and public health, 2012, 184745. https://doi.org/10.1155/2012/184745 DOI: https://doi.org/10.1155/2012/184745
Silva, J. P. S. D., Nascimento, C. W. A. D., Nascimento, A. X. D., Silva, Y. J. B. D., & Biondi, C. M. (2019). Concentrations of major and trace elements in the soils, edible parts of crops and urine of farmers in agroecological communities. Acta Scientiarum. Agronomy, 41, e42623. DOI: https://doi.org/10.4025/actasciagron.v41i1.42623
Sun, J. (2021). China’s efforts to shape and improve its international discursive power: Diplomatic practice. The Hague Journal of Diplomacy, 16(2-3), 334-347. DOI: https://doi.org/10.1163/1871191X-BJA10056
Tan, S. W., Meiller, J. C., & Mahaffey, K. R. (2009). The endocrine effects of mercury in humans and wildlife. Critical reviews in toxicology, 39(3), 228-269. DOI: https://doi.org/10.1080/10408440802233259
Tinkov, A. A., Ajsuvakova, O. P., Skalnaya, M. G., Popova, E. V., Sinitskii, A. I., Nemereshina, O. N., Gatiatulina, E. R., Nikonorov, A. A., & Skalny, A. V. (2015). Mercury and metabolic syndrome: a review of experimental and clinical observations. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 28(2), 231–254. https://doi.org/10.1007/s10534-015-9823-2 DOI: https://doi.org/10.1007/s10534-015-9823-2
Vrijens, J., Leermakers, M., Stalpaert, M., Schoeters, G., Den Hond, E., Bruckers, L., ... & Baeyens, W. (2014). Trace metal concentrations measured in blood and urine of adolescents in Flanders, Belgium: reference population and case studies Genk-Zuid and Menen. International journal of hygiene and environmental health, 217(4-5), 515-527. DOI: https://doi.org/10.1016/j.ijheh.2013.10.001
Wada, H., Cristol, D. A., McNabb, F. A., & Hopkins, W. A. (2009). Suppressed adrenocortical responses and thyroid hormone levels in birds near a mercury-contaminated river. Environmental science & technology, 43(15), 6031-6038. DOI: https://doi.org/10.1021/es803707f
Yavuz, I. H., Yavuz, G. O., Bilgili, S. G., Demir, H., & Demir, C. (2018). Assessment of Heavy Metal and Trace Element Levels in Patients with Telogen Effluvium. Indian journal of dermatology, 63(3), 246–250. https://doi.org/10.4103/ijd.IJD_610_17 DOI: https://doi.org/10.4103/ijd.IJD_610_17
Zalups R. K. (2000). Molecular interactions with mercury in the kidney. Pharmacological reviews, 52(1), 113–143. DOI: https://doi.org/10.1016/S0031-6997(24)01438-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.