ASYMPTOTICS OF THE SOLUTION OF THE CAUCHY PROBLEM FOR A SYSTEM OF DIFFERENTIAL EQUATIONS WITH A TURNING POINT
DOI:
https://doi.org/10.52754/16948645_2022_1_4Keywords:
unstable spectrum, V. Vazov's system of equations, turning point, singularly perturbed Cauchy problem, small parameter, boundary functionsAbstract
The article deals with the problem of constructing an asymptotic solution of the initial problem for the inhomogeneous Wolfgang Richard Wasow (25.07.1909-11.09.1993) equation. The inhomogeneous system of equations of V. Vazov belongs to the class of singularly perturbed ordinary differential equations. Features of the problem under study: 1) at the initial point, the main matrix is irreversible; 2) there is a small parameter before the derivative; at points other than the starting point, the main matrix has two elementary divisors of the first degree and one elementary divisor of the second degree at the starting point. In addition, the spectrum of the Vazov equation is unstable. The asymptotic expansion of the formulated problem is constructed by the method of generalized boundary functions.
References
Wasow W. Asymptotic expansions for ordinary differential equations, Interscience Publishers, New York. 1965.
Wasow W. On boundary layer problems in the theory of ordinary differential equations, Mathematics Research Center, University of Wisconsin–Madison, Technical Summary Report, 2244. 1981.
Wasow W. A turning point problem for a system of two linear differential equations, /. Math. Phys., 38 A960), 257—278. DOI: https://doi.org/10.1002/sapm1959381257
Wasow W. Turning point problems for systems of linear equations, I. The formal theory, Comm. Pure Appl. Math., 14 A961), 657–673. DOI: https://doi.org/10.1002/cpa.3160140336
Wasow W. Turning point problems for systems of linear differential equations, II. The analytic theory, Comm. Pure Appl. Math., 15 A962), 173–187. DOI: https://doi.org/10.1002/cpa.3160150206
Турсунов Д. А., Кожобеков К.Г., Асимптотическое решение сингулярно возмущенной задачи Коши с точкой поворота, Математический анализ, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 156, ВИНИТИ РАН, М., 2018, 84–88; J. Math. Sci. (N. Y.), 254:6 (2021), 788–792.
Турсунов Д.А., Кожобеков К.Г. Асимптотическое решение задачи Неймана с нерегулярной особой точкой. Дифференциальные уравнения, геометрия и топология, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 201, ВИНИТИ РАН, М., 2021, 98–102.
Кожобеков К.Г. Асимптотика решения краевой задачи, когда предельное уравнение имеет нерегулярную особую точку. Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 29:3 (2019), 332–340.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Osh State University. Mathematics. Physics. Technical Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.