EXISTENCE OF QUASI-DOUBLE LINES OF THE PAIR OF FOUR DIMENSIONAL DISTRIBUTIONS IN PARTIAL MAPPING OF EUCLIDEAN SPACE

Authors

  • Гулбадан Matieva Osh State University
  • Tolkun Papieva Osh State University
  • Gulmira Shamshieva Osh State University

DOI:

https://doi.org/10.52754/16948645_2024_2(5)_17

Keywords:

partial mapping, Frenet’s frame, Euclidean space, distribution, cyclic net of Frenet, quasi-double line

Abstract

A family of smooth lines given in the domain  so that through each point  passes one line  of given family. A movable frame is chosen so that it was Frenet’s frame for the line  of the given family. The integral lines of the coordinate vectors fields of this frame form a Frenet’s net. On a tangent to the line  a point  is defined in an invariant way. When the point  moves in the domain , the point  describes it's domain  In this way we get a partial mapping   such, that .

It is considered the four dimensional distributions  and . It is found the necessary and sufficient conditions for lines  and  to be quasi-double lines of the pair of distributions  in the partial mapping

References

Рашевский П.К. Риманова геометрия и тензорный анализ // Москва: Наука, 1967.  С. 481-482.

Матиева Г., Абуллаева Ч.Х., Нышанбаева Н.Т. E5 евклиддик мейкиндигинде бөлүктөп чагылтуусунун квазикошмок сызыктарынын жашашынын зарыл жана жетиштүү шарттары [текст] // Илим. Билим. Техника. – Ош, 2022. – № 3 (75). – С. 32-39.

Фиников, С. П. Метод внешних форм Картана в дифференциальной геометрии [Текст] / С. П. Фиников. – М.-Л.: Госттехиздат, 1948. – 432 с.

Матиева Г., Папиева Т.М., Курбанбаева Н.Н. Геометрия частичных отображений евклидова пространства, порождаемых заданной сетью Френе / Монография. – Ош: «Билим»ОшГУ, 2022. – 130 с.

Published

2024-12-10

How to Cite

Matieva Г., Papieva , T., & Shamshieva , G. (2024). EXISTENCE OF QUASI-DOUBLE LINES OF THE PAIR OF FOUR DIMENSIONAL DISTRIBUTIONS IN PARTIAL MAPPING OF EUCLIDEAN SPACE. Journal of Osh State University. Mathematics. Physics. Technical Sciences, (2(5), 148–153. https://doi.org/10.52754/16948645_2024_2(5)_17