PEDAGOGICAL APPROACHES IN TEACHER TRAINING IN THE CONTEXT OF SYNTHETIC TRANSFORMATION AND ARTIFICIAL INTELLIGENCE
DOI:
https://doi.org/10.52754/16948742_2(7)_9-2025Keywords:
digital transformation, artificial intelligence, pedagogical approach, differentiated learning, mathematics, feedback, facilitator, mentor, quality of educationAbstract
This article explores the pedagogical conditions for preparing future teachers of mathematics in the context of rapid digital transformation and the growing integration of artificial intelligence (AI) into education. AI significantly reshapes the teacher's role, requiring new competencies, flexible thinking, and the ability to guide and mentor students in a tech-driven environment. The article aims to identify effective pedagogical approaches and conditions that support the training of future math teachers in higher education. Through the analysis of academic literature, best practices, and AI-powered teaching platforms like Synthesis Tutor 2.0, the paper outlines the evolving role of educators, challenges of personalization, and ethical considerations. Special focus is given to maintaining emotional connection, critical thinking, and pedagogical guidance in an AI-enhanced learning environment. The article highlights the strengths and limitations of AI in diagnosing learning gaps, differentiating instruction, and providing real-time feedback, while emphasizing the irreplaceable human role in value-based and empathetic education. Practical recommendations are offered for updating teacher education curricula to align with the demands of the AI era.
References
Кемеров, И. Н. (2022). Искусственный интеллект в образовании: вызовы и перспективы. Современные проблемы науки и образования, (4), 38–44.
Конколь, М. М. (2024). Трансформация образовательного процесса через призму искусственного интеллекта и нейросетевого прогресса. Мир науки, культуры, образования, (6(109)). https://doi.org/10.24412/1991-5497-2024-6109-104-108
Минеева, Е. А. (2021). Искусственный интеллект в образовании: вызовы и перспективы. Педагогика и психология образования, (2), 15–21.
Anderson, M. & Anderson, S. L. (2011). Machine ethics. Cambridge University Press.
Chen, X., Xie, H., Zou, D., & Hwang, G.-J. (2020). Application and theory gaps during the rise of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1(1). https://doi.org/10.1016/j.caeai.2020.100002
Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in education: Promises and Implications for Teaching and Learning. The Center for Curriculum Redesign. https://doi.org/10.24412/1991-5497-2024-6109-104-108
Luckin, R., Holmes, W., & Forcier, L. B. (2016). Intelligence Unleashed: an Argument for AI in Education. Pearson.
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, (16(1)), 1–27. https://doi.org/10.1186/s41239-019-0171-0
OpenAI Synthesis Tutor 2.0 – Technical Overview. Retrieved from. (2023). https://openai.com/research/synthesis-tutor
YouTube. www.youtube.com. https://www.youtube.com/watch?v=0x1jcWIo
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Айчүрөк Токтополотовна Калдыбаева, Буажар Абдусаттаровна Бекмурзаева

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.