SOME CONSTRUCTIVE -ADIC GENERALIZED GIBBS MEASURES FOR THE ISING MODEL ON A CAYLEY TREE
SOME CONSTRUCTIVE -ADIC GENERALIZED GIBBS MEASURES FOR THE ISING MODEL ON A CAYLEY TREE
DOI:
https://doi.org/10.52754/16948645_2023_2_187Ачкыч сөздөр:
p-adic numbers, p-adic Ising model, Cayley tree, Gibbs measure, phase transitionАннотация
The paper is devoted to some non-periodic -adic generalized Gibbs measures for Ising model on a semi-Cayley tree of order . We construct uncountable non-periodic -adic generalized Gibbs measures for the Ising model on a semi-Cayley tree. We study the boundedness of the measures. Furthermore, we find conditions that guarantee existence of the phase transition.
Библиографиялык шилтемелер
U.A.Rozikov, Gibbs Measures on Cayley Trees, World Scientific Publisher, Singapore, 2013. DOI: https://doi.org/10.1142/8841
V.S.Vladimirov, I.V.Volovich and E.V.Zelenov, -Adic Analysis and Mathematical Physics, World Scientific Publisher, Singapore, 1994. DOI: https://doi.org/10.1142/1581
N.N.Ganikhodjayev, F.M.Mukhamedov, U.A.Rozikov, Existence of phase transition for the Potts -adic model on the set . Theor. Math. Phys. 130(2002), No.3, 425-431. DOI: https://doi.org/10.1023/A:1014723108030
O.N.Khakimov, On a generalized -adic Gibbs measure for Ising model on trees, -Adic Numbers Ultrametric Anal. Appl., 6(3), 207-217, 2014. DOI: https://doi.org/10.1134/S2070046614030042
F.M.Mukhamedov, On -adic quasi Gibbs measures for -state Potts model on the Cayley tree, -Adic Numbers, Ultrametric Anal. Appl., (2010), 241-251. DOI: https://doi.org/10.1134/S2070046610030064
H.Akin, U.A.Rozikov, S.Temir, A new set of limiting Gibbs measures for the Ising model on a Cayley tree, J.Stat. Phys., 142, 314-321, 2011. DOI: https://doi.org/10.1007/s10955-010-0106-6
M.M.Rahmatullaev and A.M.Tukhtabaev, Non periodic -adic generalized Gibbs measure for the Ising model, -Adic Numbers Ultrametric Anal. Appl., 11, 319-327, 2019. DOI: https://doi.org/10.1134/S207004661904006X
P.M.Bleher and N.N.Ganikhodjaev, On pure phases of the Ising model on the Bethe lattice, Theor. Probab. Appl., 35, 216-227, 1990. DOI: https://doi.org/10.1137/1135031