ON THE CAUCHY PROBLEM FOR DEGENERATE EQUATIONS OF A REACTING GAS MIXTURE
DOI:
https://doi.org/10.52754/16948645_2022_1_3Keywords:
Singular perturbations, optimal control, boundary layer, external and internal solutions, method of composite expansions, maximum principleAbstract
In this article, a system of nonlinear differential equations describing the one-dimensional flow of a reacting mixture of gases in a porous medium is investigated. An unlimited domain is considered. Moreover, the desired functions tend to zero at the initial moment of time, which leads to the degeneracy of the equations. The Cauchy problem for the equations describing flow of a reacting mixture of gases is considered. At the initial time all medium characteristics are know and have various limits at infinity. A system of differential equations is investigated that describes a one-dimensional unsteady flow of a reacting gas mixture. We study the Cauchy problem with degenerate initial data corresponding to one problem. Moreover, the desired functions at the initial moment of time have about one problem at infinity. A feature of flows with finite viscosity is the absence of shock waves in them, i.e. except for the contact, there can be no other strong gap. The existence of a generalized solution is proved by the method of regularization.
References
Бай Ши. Магнитная газодинамика и динамика плазмы [Текст] / Ши Бай – М.: Мир, 1964. – 301 c.
Антонцев, С. Н. Краевые задачи механики неоднородных жидкостей [Текст] / С.Н. Антонцев, А.В. Кажихов, В.Н. Монахов – Новосибирск : Наука, 1983. – 319 c.
Есекеев, К. Б. О задаче Коши для уравнений нестационарного течения реагирующей смеси газов [Текст] / К.Б. Есекеев, М.Ж. Есекеева, Д.А. Искендерова // Новосибирск: Наука, 1997. – № 7. – С.178–180.
Смагулов, Ш. С. Математические вопросы модели магнитной газовой динамики [Текст] / Ш.С. Смагулов, Д.А. Искендерова – Алматы : Гылым, 1997. – 166 c.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Osh State University. Mathematics. Physics. Technical Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.