ON A LINEAR INVERSE PROBLEM WITH SEMI-PERIODIC BOUNDARY CONDITIONS FOR THE THREE-DIMENTIONAL TRICOMI EQUATION IN THE UNBOUNDED PARALLELEPIPED
DOI:
https://doi.org/10.52754/16948645_2024_1(4)_13Keywords:
generalized solution, Tricomi model equation, Fourier transform, methods of “ε -regularization” and a priori estimates, semi-periodic boundary value problemAbstract
This article discusses the correctness of a linear inverse problem for the three-dimensional Tricomi equation in an unbounded parallelepiped.
To prove the uniqueness of the generalized solution, the method of energy is used. To prove the existence of a generalized solution, the Fourier transform is first used, and as a result, a new problem in the plane is obtained, and for the solvability of this problem, the methods of “ε -regularization” and a priori estimates are used. Using these methods and Parseval’s equality, we prove the uniqueness, existence and smoothness of a generalized solution of a non-local boundary value problem of periodic type for a three-dimentional mixed-type equation of the first kind of the second order.
References
Аниканов Ю.Е. Некоторые методы исследования многомерных обратных задач для дифференциальных уравнений. – Новосибирск: Наука,1978. – 120 с.
Джамалов С.З. Нелокальные краевые и обратные задачи для уравнений смешанного типа // Монография. –Ташкент, 2021. – 176 с.
S.Z.Dzhamalov, R.R.Ashurov, Kh.Sh. Turakulov. The Linear Inverse Problem for the Three- Dimensional Tricomi Equation in a Prismatic Unbounded Domain // Lobachevskii Journal of Mathematics, 2021, 42(15). – P. 3606–3615.
S.Z.Dzhamalov, M.G.Aliev, Kh.Sh. Turakulov. On a linear inverse problem for the three-dimensional Tricomi equation with nonlocal boundary conditions of periodic type in a prismatic unbounded domain. // Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math. 2022, (42)(1). – P.1-12. DOI: https://doi.org/10.1134/S1995080222030064
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.