DETERMINING SOURCES PROBLEM IN A PSEUDOPARABOLIC EQUATION OF THE THIRD ORDER
DETERMINING SOURCES PROBLEM IN A PSEUDOPARABOLIC EQUATION OF THE THIRD ORDER
DOI:
https://doi.org/10.52754/16948645_2023_2_104Keywords:
inverse problem, pseudoparabolic equation of the third order, resolvent, Volterra integral equation of the second kind, Green's functionAbstract
In this paper, the inverse source problem for a class of third-order pseudo-parabolic equations with variable coefficients is investigated. The right part is the sum of several spatially localized sources whose intensities change over time and are unknown. As additional information, the temperature values at some points are set as a function of time. Using the Green function of a mixed boundary value problem for second-order ordinary differential equations with variable coefficients, as well as the resolvent method and the Green function method, the conditions for the existence and uniqueness of the solution of the inverse problem are found.
References
Кабанихин С.И. Обратные и некорректные задачи: учеб. пособие / С.И. Кабанихин. – Новосибирск: Сиб.науч. изд., 2009. - 457 с.
Robert A. Meyers. Mathematics of Complexity and Dynamical Systems / Robert A. Meyers, Springer-Verlag New York, 2011. – 1858 p. DOI: https://doi.org/10.1007/978-1-4614-1806-1
Robert A. Van Gorder Third-order partial differential equations arising in the impulsive motion of a flat plate / Robert A. Van Gorder, Vajravelu K. // Communications in Nonlinear Science and Numerical Simulation. 2009.Vol. 14, Issue 6. P. 2629–2636. DOI: https://doi.org/10.1016/j.cnsns.2008.09.014
Баренблатт Г.И. Об основных представлениях теории фильтрации однородных жидкостей в трещиноватых породах / Г.И. Баренблатт, Ю.П. Желтов, И.Н. Кочина // Прикл. математика и механика. 1960. Т. 24, вып. 5. С. 852-866.
Юлдашев Т.К. Обратная задача для одного интегро-дифференциального уравнения Фредгольма в частных производных третьего порядка / Т.К.Юлдашев // Вестник Сам. гос. техн. ун-та. 2014, выпуск 1(34). - с. 56-65. DOI: http://dx.doi.org/10.14498/vsgtu1299 DOI: https://doi.org/10.14498/vsgtu1299
Isakov V. Inverse Problems for Partial Differential Equations / V.Isakov. - Springer, New York, 2006, 284 pages;
Kozhanov A. I. Composite Type Equations and Inverse Problems / Kozhanov A. I.- VSP, Utrecht, Netherlands, 1999 DOI: https://doi.org/10.1515/9783110943276
Shitao Liu, An inverse problem for a third order PDE arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement / Liu Shitao, Triggiani Roberto // Journal of Inverse and I11-Posed Problems. Volume 21, Issue 6, DOI: 10.1515/jip-2012-0096, 2013.- P 825-869. DOI: https://doi.org/10.1515/jip-2012-0096
Denisov A.M. Determining the Intensity Variation of Heat Sources in the Heat Equation/ A.M. Denisov, S.I. Solov’eva //Comput Math Model 33, 1–8 (2022). https://doi.org/10.1007/s10598-022-09551-4. DOI: https://doi.org/10.1007/s10598-022-09551-4
. – Volume 8, №3, 2012.- P. 321-328.
Коллатц, Л. Задачи на собственные значения /Л. Коллатц. – М.: Наука, 1968. – 504 с.
Матанова К. Б., Ашырбекова А.Н. Үчүнчү тартиптеги өзгөрмөлүү коэффициенттүү жекече туундулуу дифференциалдык теңдеме үчүн тескери маселе / К. Б. Матанова, А.Н. Ашырбекова // КМКТАУнун Жарчысы №4 (78), 2022. – Б.1603-1611.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Вестник Ошского государственного университета. Математика. Физика. Техника
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.