DETERMINING SOURCES PROBLEM IN A PSEUDOPARABOLIC EQUATION OF THE THIRD ORDER

DETERMINING SOURCES PROBLEM IN A PSEUDOPARABOLIC EQUATION OF THE THIRD ORDER

Authors

  • Bazarbaevna Kyrgyz-Turkish Manas University

DOI:

https://doi.org/10.52754/16948645_2023_2_104

Keywords:

inverse problem, pseudoparabolic equation of the third order, resolvent, Volterra integral equation of the second kind, Green's function

Abstract

In this paper, the inverse source problem for a class of third-order pseudo-parabolic equations with variable coefficients is investigated. The right part is the sum of several spatially localized sources whose intensities change over time and are unknown. As additional information, the temperature values at some points are set as a function of time. Using the Green function of a mixed boundary value problem for second-order ordinary differential equations with variable coefficients, as well as the resolvent method and the Green function method, the conditions for the existence and uniqueness of the solution of the inverse problem are found.

References

Кабанихин С.И. Обратные и некорректные задачи: учеб. пособие / С.И. Кабанихин. – Новосибирск: Сиб.науч. изд., 2009. - 457 с.

Robert A. Meyers. Mathematics of Complexity and Dynamical Systems / Robert A. Meyers, Springer-Verlag New York, 2011. – 1858 p. DOI: https://doi.org/10.1007/978-1-4614-1806-1

Robert A. Van Gorder Third-order partial differential equations arising in the impulsive motion of a flat plate / Robert A. Van Gorder, Vajravelu K. // Communications in Nonlinear Science and Numerical Simulation. 2009.Vol. 14, Issue 6. P. 2629–2636. DOI: https://doi.org/10.1016/j.cnsns.2008.09.014

Баренблатт Г.И. Об основных представлениях теории фильтрации однородных жидкостей в трещиноватых породах / Г.И. Баренблатт, Ю.П. Желтов, И.Н. Кочина // Прикл. математика и механика. 1960. Т. 24, вып. 5. С. 852-866.

Юлдашев Т.К. Обратная задача для одного интегро-дифференциального уравнения Фредгольма в частных производных третьего порядка / Т.К.Юлдашев // Вестник Сам. гос. техн. ун-та. 2014, выпуск 1(34). - с. 56-65. DOI: http://dx.doi.org/10.14498/vsgtu1299 DOI: https://doi.org/10.14498/vsgtu1299

Isakov V. Inverse Problems for Partial Differential Equations / V.Isakov. - Springer, New York, 2006, 284 pages;

Kozhanov A. I. Composite Type Equations and Inverse Problems / Kozhanov A. I.- VSP, Utrecht, Netherlands, 1999 DOI: https://doi.org/10.1515/9783110943276

Shitao Liu, An inverse problem for a third order PDE arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement / Liu Shitao, Triggiani Roberto // Journal of Inverse and I11-Posed Problems. Volume 21, Issue 6, DOI: 10.1515/jip-2012-0096, 2013.- P 825-869. DOI: https://doi.org/10.1515/jip-2012-0096

Denisov A.M. Determining the Intensity Variation of Heat Sources in the Heat Equation/ A.M. Denisov, S.I. Solov’eva //Comput Math Model 33, 1–8 (2022). https://doi.org/10.1007/s10598-022-09551-4. DOI: https://doi.org/10.1007/s10598-022-09551-4

. – Volume 8, №3, 2012.- P. 321-328.

Коллатц, Л. Задачи на собственные значения /Л. Коллатц. – М.: Наука, 1968. – 504 с.

Матанова К. Б., Ашырбекова А.Н. Үчүнчү тартиптеги өзгөрмөлүү коэффициенттүү жекече туундулуу дифференциалдык теңдеме үчүн тескери маселе / К. Б. Матанова, А.Н. Ашырбекова // КМКТАУнун Жарчысы №4 (78), 2022. – Б.1603-1611.

Published

2023-12-30

How to Cite

Matanova, K. (2023). DETERMINING SOURCES PROBLEM IN A PSEUDOPARABOLIC EQUATION OF THE THIRD ORDER: DETERMINING SOURCES PROBLEM IN A PSEUDOPARABOLIC EQUATION OF THE THIRD ORDER. Journal of Osh State University. Mathematics. Physics. Technical Sciences, (2(3), 104–115. https://doi.org/10.52754/16948645_2023_2_104