О НЕКОТОРОЙ ТЕОРЕМЕ ТИПА ФРАГМЕНА-ЛИНДЕЛЁФА
DOI:
https://doi.org/10.52754/16948645_2024_1(4)_14Ачкыч сөздөр:
теорема типа Фрагмена–Линделёфа, бигармоническая функция, функция Карлемана, интегральное представлениеАннотация
Работа посвящена теореме типа Фрагмена–Линделефа для бигармонических функций, которая получена с помощью формул Карлемановского типа. Доказывается интегральное представление для бигармонических функций. При помощи этого интегрального представления получается некоторые свойства (оценка роста, формула Карлемана) бигармонических функций определенного класса в .
Библиографиялык шилтемелер
Phragmen E. Lindelof E. Sur une extension d’un principe classique de l’analyse et sur quelques propri’et’es des functions monogenes dans le voisinage d’un point singulier, Acta Math. 31. no 1. 1908.pp. 381-406. DOI: https://doi.org/10.1007/BF02415450
Ahlfors L., On Phragmen-Lindelof’s principle. Trans. Amer. Math. Soc. 41, 1937, pp. 1-8. DOI: https://doi.org/10.1090/S0002-9947-1937-1501888-X
Gilbarg D. The Phragmen-Lindelof theorem for elliptic partial differential equations. J. Rational Mech. Anal. 1. 1952. pp. 411-417. DOI: https://doi.org/10.1512/iumj.1952.1.51011
Serrin J. On the Phragmen-Lindelof principle for elliptic differential equations. J. Rational Mech. Anal. 3. 1954. pp. 395-413. DOI: https://doi.org/10.1512/iumj.1954.3.53020
Kurta V. V. Phragmen-Lindelof theorems for second-order quasilinear elliptic equations. Ukrain. Mat. Zh. 44. 10. 1992. pp 1376-1381. DOI: https://doi.org/10.1007/BF01057683
Jin Z., Lancaster K. Theorems of Phragmen-Lindelof type for quasilinear elliptic equations. J. Reine Angew. Math. 514.1999. pp. 165-197. DOI: https://doi.org/10.1515/crll.1999.070
Jin Z., Lancaster K. Phragmen-Lindelof theorems and the asymptotic behavior of solutions of quasilinear elliptic equations in slabs. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 130. 2. 2000. pp. 335-373. DOI: https://doi.org/10.1017/S0308210500000196
Jin Z., Lancaster K. A Phragmen-Lindelof theorem and the behavior at infinity of solutions of non-hyperbolic equations. Pacific journal of mathematics 211. no 1. 2003. pp. 101-121. DOI: https://doi.org/10.2140/pjm.2003.211.101
Capuzzo D., Vitolo A. A qualitative Phragmen-Lindelof theorem for fully nonlinear elliptic equations. Differential Equations 243. no 2. 2007. pp. 578-592. DOI: https://doi.org/10.1016/j.jde.2007.08.001
Armstrong S. N., Sirakov B., Smart C. K. Singular solutions of fully nonlinear elliptic equations and applications. Arch. Ration. Mech. Anal. 205. no 2. 2012. pp. 345-394. DOI: https://doi.org/10.1007/s00205-012-0505-8
Adamowicz T. Phragmen-Lindelof theorems for equations with nonstandard growth. Nonlinear Analysis: Theory, Methods and Applications 97. 2014. pp. 169- 184. DOI: https://doi.org/10.1016/j.na.2013.11.018
Bhattacharya T. On the behaviour of infinity-harmonic functions on some special unbounded domains. Pacific Journal of Mathematics 219. no 2. 2005. pp. 237-253. DOI: https://doi.org/10.2140/pjm.2005.219.237
Granlund S., Marola N. Phragmen-Lindelof theorem for infinity harmonic functions. Commun. Pure Appl. Anal. 14 (2015), pp. 127-132 DOI: https://doi.org/10.3934/cpaa.2015.14.127
Almefleh H., Lancaster K. Pragmen-Lindelof theorems in cylinders. Royal Society of Edinburgh. Proceedings A. 135. 2005 .3. pp. 439 - 459. DOI: https://doi.org/10.1017/S0308210505000235
Almefleh H., AlAhmad R. Pragmen-Lindelof type theorem at infinity. International Journal of Mathematics and Computer Science. 17. 2022.1. pp. 331-343.
Evgraphov M.A., Chegis I.A. Generalization of the Phragmen-Lindelof type theorem for analytic functions to harmonic functions in space. Reports of the Academy of Sciences of the USSR. 1960, Vol.134, pp. 252-262.
Leontiev A.F. On Phragmen-Lindelof type theorems for harmonic functions in a cylinder. Proceedings of the Academy of Sciences of of the USSR. 1960. Vol. 27. pp. 661-676.
Arshon I.S., Evgraphov M.A. An example of a harmonic function in the whole space, bounded outside a circular cylinder. Reports of the Academy of Sciences of the USSR. 1962 Vol. 143. pp. 231-234.
Yarmukhamedov Sh.Ya. The Cauchy problem for the polyharmonic equation.Reports of the Russian Academy of Sciences.2003. Vol.388. pp-162-165.
Ashurova Z.R., Juraeva N.Yu., Juraeva U.Yu. About some properties of the Yarmukhamedov kernel. International Journal of Innovative Research. 2021, Impact Factor 7.512. Vol. 10. pp. 84-90
Ashurova Z.R., Jurayeva N.YU., Jurayeva U.Yu. Growing Polyharmonic functions and Cauchy problem. Journal of Critical Reviews. India 2020. DOI 10.31938.jcr.07.06.62. Vol. 7. pp. 371-378. DOI: https://doi.org/10.31838/jcr.07.07.62
Ashurova Z.R., Jurayeva N.YU., Jurayeva U.Yu. Task Cauchy and Carleman function. Academicia: An International Multidisciplinary Research Journal. Affiliated to Kurukshetra University, Kurukshetra. 2020. URL http://saarj.com Vol.10. pp. 371-378. DOI: https://doi.org/10.5958/2249-7137.2020.00369.9
Ashurova Z.R., Jurayeva N.YU., Jurayeva U.Yu. The Carleman function and the Cauchy problem for polyharmonic functions. Lap LAMBERT Academic publishing Saabrucen.2013. 96 p.
Jurayeva U.Yu . The Phragmen-Lindelof type theorems. Uzbek Mathematical Journal 2022, Volume 66, Issue 3, pp.54-61. DOI: 10.29229/uzmj.2022-3-7.
Жураева У. Ю., Теоремы типа Фрагмена–Линделефа для бигармонических функций, Изв. вузов. Матем., 2022, номер 10, 42–65. DOI: https://doi.org/10.26907/0021-3446-2022-10-42-65 DOI: https://doi.org/10.26907/0021-3446-2022-10-42-65