ABOUT SOME THEOREM OF THE PHRAGMEN-LINDELOF TYPE

Authors

  • Umidahon Jurayeva Samarkand State University named after Sharof Rashidov

DOI:

https://doi.org/10.52754/16948645_2024_1(4)_14

Keywords:

Phragmen–Lindelof type theorem, biharmonic function, Carlеman’s function, integral representation

Abstract

Theorems of the Phragmen–Lindelof type for biharmonic functions, which is obtained using Carleman type formulas, is considered. The integral representation for biharmonic functions is proved. With the help of this integral representation, some properties (growth estimation, Carleman formula) of biharmonic functions of a certain class in  are obtained.

References

Phragmen E. Lindelof E. Sur une extension d’un principe classique de l’analyse et sur quelques propri’et’es des functions monogenes dans le voisinage d’un point singulier, Acta Math. 31. no 1. 1908.pp. 381-406. DOI: https://doi.org/10.1007/BF02415450

Ahlfors L., On Phragmen-Lindelof’s principle. Trans. Amer. Math. Soc. 41, 1937, pp. 1-8. DOI: https://doi.org/10.1090/S0002-9947-1937-1501888-X

Gilbarg D. The Phragmen-Lindelof theorem for elliptic partial differential equations. J. Rational Mech. Anal. 1. 1952. pp. 411-417. DOI: https://doi.org/10.1512/iumj.1952.1.51011

Serrin J. On the Phragmen-Lindelof principle for elliptic differential equations. J. Rational Mech. Anal. 3. 1954. pp. 395-413. DOI: https://doi.org/10.1512/iumj.1954.3.53020

Kurta V. V. Phragmen-Lindelof theorems for second-order quasilinear elliptic equations. Ukrain. Mat. Zh. 44. 10. 1992. pp 1376-1381. DOI: https://doi.org/10.1007/BF01057683

Jin Z., Lancaster K. Theorems of Phragmen-Lindelof type for quasilinear elliptic equations. J. Reine Angew. Math. 514.1999. pp. 165-197. DOI: https://doi.org/10.1515/crll.1999.070

Jin Z., Lancaster K. Phragmen-Lindelof theorems and the asymptotic behavior of solutions of quasilinear elliptic equations in slabs. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 130. 2. 2000. pp. 335-373. DOI: https://doi.org/10.1017/S0308210500000196

Jin Z., Lancaster K. A Phragmen-Lindelof theorem and the behavior at infinity of solutions of non-hyperbolic equations. Pacific journal of mathematics 211. no 1. 2003. pp. 101-121. DOI: https://doi.org/10.2140/pjm.2003.211.101

Capuzzo D., Vitolo A. A qualitative Phragmen-Lindelof theorem for fully nonlinear elliptic equations. Differential Equations 243. no 2. 2007. pp. 578-592. DOI: https://doi.org/10.1016/j.jde.2007.08.001

Armstrong S. N., Sirakov B., Smart C. K. Singular solutions of fully nonlinear elliptic equations and applications. Arch. Ration. Mech. Anal. 205. no 2. 2012. pp. 345-394. DOI: https://doi.org/10.1007/s00205-012-0505-8

Adamowicz T. Phragmen-Lindelof theorems for equations with nonstandard growth. Nonlinear Analysis: Theory, Methods and Applications 97. 2014. pp. 169- 184. DOI: https://doi.org/10.1016/j.na.2013.11.018

Bhattacharya T. On the behaviour of infinity-harmonic functions on some special unbounded domains. Pacific Journal of Mathematics 219. no 2. 2005. pp. 237-253. DOI: https://doi.org/10.2140/pjm.2005.219.237

Granlund S., Marola N. Phragmen-Lindelof theorem for infinity harmonic functions. Commun. Pure Appl. Anal. 14 (2015), pp. 127-132 DOI: https://doi.org/10.3934/cpaa.2015.14.127

Almefleh H., Lancaster K. Pragmen-Lindelof theorems in cylinders. Royal Society of Edinburgh. Proceedings A. 135. 2005 .3. pp. 439 - 459. DOI: https://doi.org/10.1017/S0308210505000235

Almefleh H., AlAhmad R. Pragmen-Lindelof type theorem at infinity. International Journal of Mathematics and Computer Science. 17. 2022.1. pp. 331-343.

Evgraphov M.A., Chegis I.A. Generalization of the Phragmen-Lindelof type theorem for analytic functions to harmonic functions in space. Reports of the Academy of Sciences of the USSR. 1960, Vol.134, pp. 252-262.

Leontiev A.F. On Phragmen-Lindelof type theorems for harmonic functions in a cylinder. Proceedings of the Academy of Sciences of of the USSR. 1960. Vol. 27. pp. 661-676.

Arshon I.S., Evgraphov M.A. An example of a harmonic function in the whole space, bounded outside a circular cylinder. Reports of the Academy of Sciences of the USSR. 1962 Vol. 143. pp. 231-234.

Yarmukhamedov Sh.Ya. The Cauchy problem for the polyharmonic equation.Reports of the Russian Academy of Sciences.2003. Vol.388. pp-162-165.

Ashurova Z.R., Juraeva N.Yu., Juraeva U.Yu. About some properties of the Yarmukhamedov kernel. International Journal of Innovative Research. 2021, Impact Factor 7.512. Vol. 10. pp. 84-90

Ashurova Z.R., Jurayeva N.YU., Jurayeva U.Yu. Growing Polyharmonic functions and Cauchy problem. Journal of Critical Reviews. India 2020. DOI 10.31938.jcr.07.06.62. Vol. 7. pp. 371-378. DOI: https://doi.org/10.31838/jcr.07.07.62

Ashurova Z.R., Jurayeva N.YU., Jurayeva U.Yu. Task Cauchy and Carleman function. Academicia: An International Multidisciplinary Research Journal. Affiliated to Kurukshetra University, Kurukshetra. 2020. URL http://saarj.com Vol.10. pp. 371-378. DOI: https://doi.org/10.5958/2249-7137.2020.00369.9

Ashurova Z.R., Jurayeva N.YU., Jurayeva U.Yu. The Carleman function and the Cauchy problem for polyharmonic functions. Lap LAMBERT Academic publishing Saabrucen.2013. 96 p.

Jurayeva U.Yu . The Phragmen-Lindelof type theorems. Uzbek Mathematical Journal 2022, Volume 66, Issue 3, pp.54-61. DOI: 10.29229/uzmj.2022-3-7.

Жураева У. Ю., Теоремы типа Фрагмена–Линделефа для бигармонических функций, Изв. вузов. Матем., 2022, номер 10, 42–65. DOI: https://doi.org/10.26907/0021-3446-2022-10-42-65 DOI: https://doi.org/10.26907/0021-3446-2022-10-42-65

Published

2024-06-11

How to Cite

Jurayeva, U. (2024). ABOUT SOME THEOREM OF THE PHRAGMEN-LINDELOF TYPE. Journal of Osh State University. Mathematics. Physics. Technical Sciences, (1(4), 73–77. https://doi.org/10.52754/16948645_2024_1(4)_14