CALCULATION OF MEMBRANE’S BENDING ON ELASTIC BASE
CALCULATION OF MEMBRANE’S BENDING ON ELASTIC BASE
DOI:
https://doi.org/10.52754/16948645_2023_2_140Keywords:
Neumann boundary condition, Dirichlet boundary condition, screened Poisson equation, method of fictitious components, method of iterative extensionsAbstract
Problem for screened Poisson equation in L-shaped domain with homogeneous Neumann boundary condition on larger sides and homogeneous Dirichlet boundary condition on the rest of sides described. Method of iterative extensions for finding an approximate solution proposed. Computer program for calculating an array field of membrane point’s movement implemented. Input data are lengths of domain sides, array of right-hand values of screened Poisson equation in grid nodes of predetermined size, and accuracy of solution of difference analogue of the problem. Program implements visualization of array field of membrane point’s movement and writing this array into file.
References
Aubin, J.-P. Approximation of elliptic boundary-value problems / J.-P. Aubin // New York: Wiley-Interscience, 1972. – 360 p.
Ushakov, A.L. Investigation of a mixed boundary value problem for Poisson equation / A.L. Ushakov // 2020 International Russian Automation Conference (RusAutoCon), Sochi, Russia. – 2020. – P. 273-278. DOI: https://doi.org/10.1109/RusAutoCon49822.2020.9208198
Ушаков, А.Л. Анализ смешанной краевой задачи для уравнения Пуассона / А.Л. Ушаков // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. – 2021. – Т. 13, №1. – С. 29-40. DOI: https://doi.org/10.14529/mmph210104
Мацокин, А.М. Метод фиктивного пространства и явные операторы продолжения / А.М. Мацокин, С.В. Непомнящих // Ж. вычисл. матем. и матем. физ.– 1993. – Т. 33, № 1. – С. 52-68.
Marchuk, G.I. Fictitiois Domain and Domain Decomposition Methods / G.I. Marchuk, Yu.A. Kuznetsov, A.M. Matsokin // Russian Journal of Numerical Analysis and Mathematical Modeling. – 1986. – Vol. 1, Iss. 1. – P. 3-35. DOI: https://doi.org/10.1515/rnam.1986.1.1.3
Ушаков, А.Л. О моделировании деформаций пластин / А.Л. Ушаков // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. – 2015. – Т. 8, № 2. – С. 138-142. DOI: https://doi.org/10.14529/mmp150213
Ушаков, А.Л. Асимптотически оптимальное решение модельной задачи для экранированного уравнения Пауссона / А.Л. Ушаков // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. – 2019. – Т. 11, №2. – С. 25-35. DOI: https://doi.org/10.14529/mmph190204
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Вестник Ошского государственного университета. Математика. Физика. Техника
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.