BOUNDARY VALUE PROBLEM FOR LOADED THIRD-ORDER PARABOLIC-HYPERBOLIC EQUATION IN AN INFINITE THREE DIMENSIONAL DOMAIN
DOI:
https://doi.org/10.52754/16948645_2023_1_59Keywords:
Key words:. Third-order equation, loaded equation, Gellerstedt problem, Fourier transform, regular solution, extremum principle, estimation of the solution.Abstract
In this paper, we formulate and study the problem with Gellerstedt conditions on different characteristic planes for a loaded parabolic-hyperbolic equation of the third order in a three-dimensional domain. The main method of the study of the problem is the Fourier transform. Based on the Fourier transform, the problem and equation are reduced to a planar analogue of the Gellerstedt problem with a spectral parameter, both in the equation and in boundary conditions.
The uniqueness of the solution of the problem is proved using a new extremum principle for loaded equations of mixed type of the third order. Using a general representation of the solution, the existence of a solution to the problem by the method of integral equations is proved. In addition, the asymptotic behavior of the solution of the problem for large values of the spectral parameter is studied. Sufficient conditions have been found under which all operations are legal.
References
Джураев Т.Д., Сопуев А., Мамажонов М. Краевые задачи для уравнений параболо-гиперболического типа .Ташкент: «Фан». 1986. 220 с.
Салахитдинов М.С. Уравнения смешанно-составного типа. Ташкент: «Фан». 1974. 156 с.
Джураев Т.Д. Краевые задачи для уравнений смешанного и смешанно-составного типа. Ташкент: «Фан». 1979. 240 с.
Islomov B., Baltaeva U.I. Boundary value problems for a third-order loaded parabolic-hyperbolic equation with variable coefficients. EJDE. Texas State University San Marcos, 2015. V. 2015. № 221. Pp. 1-10.
Исломов Б., Курьязов Д.М. Краевые задачи для смешанного нагруженного уравнения третьего порядка параболо-гиперболического типа// “Узбекский математический журнал”. 2000. № 2. С. 29-35.
Бицадзе А.В. Некоторые классы уравнений в частных производных. М.: Наука. 1981. 448 с.
Ильин А.М., Калашников А.С., Олейник О.А. Линейные уравнения второго порядка параболического типа.// ЖВМиМФ.1965. 4(6). С.1006-1024.
Islomov B.I., Alikulov Y.K. Boundary value problem for loaded equation of parabolic-giperbolic type of the third order in an infinite three-dimensional domain //International journal of applied mathematics, 2021, Vol.34, No.2, pp.158-170, DOI: https://doi.org/10.12732/ijam.v34i2.13
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.