BOUNDARY VALUE PROBLEM FOR LOADED THIRD-ORDER PARABOLIC-HYPERBOLIC EQUATION IN AN INFINITE THREE DIMENSIONAL DOMAIN

Authors

  • Islomov Bozor Islomovich National university of Uzbekistan named after Mirzo Ulugbek
  • Alikulov Yolqin Kodirovich Tashkent university of information technologies named after Muhammad al-Khwarizmi and Nurafshon branch of the Tashkent university of information technologies named after Muhammad al-Khwarizmi

DOI:

https://doi.org/10.52754/16948645_2023_1_59

Keywords:

Key words:. Third-order equation, loaded equation, Gellerstedt problem, Fourier transform, regular solution, extremum principle, estimation of the solution.

Abstract

In this paper, we formulate and study the problem with Gellerstedt conditions on different characteristic planes for a loaded parabolic-hyperbolic equation of the third order in a three-dimensional domain. The main method of the study of the problem is the Fourier transform. Based on the Fourier transform, the problem and equation are reduced to a planar analogue of the Gellerstedt problem with a spectral parameter, both in the equation and in boundary conditions.

The uniqueness of the solution of the problem is proved using a new extremum principle for loaded equations of mixed type of the third order. Using a general representation of the solution, the existence of a solution to the problem by the method of integral equations is proved. In addition, the asymptotic behavior of the solution of the problem for large values of the spectral parameter is studied. Sufficient conditions have been found under which all operations are legal.

References

Джураев Т.Д., Сопуев А., Мамажонов М. Краевые задачи для уравнений параболо-гиперболического типа .Ташкент: «Фан». 1986. 220 с.

Салахитдинов М.С. Уравнения смешанно-составного типа. Ташкент: «Фан». 1974. 156 с.

Джураев Т.Д. Краевые задачи для уравнений смешанного и смешанно-составного типа. Ташкент: «Фан». 1979. 240 с.

Islomov B., Baltaeva U.I. Boundary value problems for a third-order loaded parabolic-hyperbolic equation with variable coefficients. EJDE. Texas State University San Marcos, 2015. V. 2015. № 221. Pp. 1-10.

Исломов Б., Курьязов Д.М. Краевые задачи для смешанного нагруженного уравнения третьего порядка параболо-гиперболического типа// “Узбекский математический журнал”. 2000. № 2. С. 29-35.

Бицадзе А.В. Некоторые классы уравнений в частных производных. М.: Наука. 1981. 448 с.

Ильин А.М., Калашников А.С., Олейник О.А. Линейные уравнения второго порядка параболического типа.// ЖВМиМФ.1965. 4(6). С.1006-1024.

Islomov B.I., Alikulov Y.K. Boundary value problem for loaded equation of parabolic-giperbolic type of the third order in an infinite three-dimensional domain //International journal of applied mathematics, 2021, Vol.34, No.2, pp.158-170, DOI: https://doi.org/10.12732/ijam.v34i2.13

Published

2023-06-30

How to Cite

Islomov , B., & Alikulov , Y. (2023). BOUNDARY VALUE PROBLEM FOR LOADED THIRD-ORDER PARABOLIC-HYPERBOLIC EQUATION IN AN INFINITE THREE DIMENSIONAL DOMAIN. Journal of Osh State University. Mathematics. Physics. Technical Sciences, (1(2), 59–68. https://doi.org/10.52754/16948645_2023_1_59