Inverse problem of determining a temporary source in the heat equation with time-fractional derivatives
Inverse problem of determining a temporary source in the heat equation with time-fractional derivatives
DOI:
https://doi.org/10.52754/16948645_2023_2_6Keywords:
inverse problem, Cauchy problem, Gerasimov–Caputo fractional derivative, Mittag–Leffler function, integral equation..Abstract
The paper investigates the inverse problem of determining the unknown time-dependent source in the Cauchy problem for the diffusion equation with time-fractional derivatives with redefinition at the point x = 0. To solve the inverse problem
the fundamental solution of the diffusion equation with time-fractional derivatives is used. The inverse problem is reduced to an equivalent linear Volterra integral equation of the second kind. Using the method of successive approximations, we prove the existence and uniqueness of a solution to the problem under consideration. A stability estimate is also obtained.
References
Kilbas A. A., Srivastava H. M. and Trujillo J. J. “Theory and Applications of Fractional Differential Equations,” North-Holland Mathematics Studies, Vol. 204, 2006.
Miller K. S. and. Ross B. “An Introduction to the Frac- tional Calculus and Fractional Differential Equations,” John Wiley, New York, 1993.
Podlubny I. “Fractional Differential Equations,” Aca- demic Press, San Diego, New York, London, 1999.
Eidelman S.D., Kochubei A.N. Cauchy Problem for Fractional Diffusion Equations, Vol. 199, yr.2018.pages 211-255. DOI: https://doi.org/10.1016/j.jde.2003.12.002
Аблабеков Б.С., Жуман кызы.А. О разрешимости первой начально-краевой задачи для одномерного псевдопараболического уравнения с дробными производными // Вестник Ошского государственного университета. 2022, № 1. С. 29-37. DOI: https://doi.org/10.52754/16948645_2023_1_6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.