INVERSE PROBLEM OF FINDINING THE RIGHT-HAND SIDE OF THE PARTIAL DIFFERENTIAL EQUATION IN FOURTH-ORDER

Authors

  • Anvar Khalmatov
  • Zilola Kalandarova
  • Gulnur Kanybek kyzy

DOI:

https://doi.org/10.52754/16948645_2022_1_6

Keywords:

Singularly perturbed, weakly indignant, turning point

Abstract

The subject of the research is an inhomogeneous, linear fourth-order partial differential equation with two independent variables. The aim of the research is to find a solution that satisfies both the initial and homogeneous boundary conditions of the first kind. Integral, integro-differential equations can be found in all areas of science, for example, the transfer equation that arises in the processes of slowing down neutrons, which plays an important role in modern physics. We know that the oscillations of a thin wire can be expressed by separate second-order differential equations. If, instead of a wire, we consider a thin solid beam (thin hammer), then the process of its oscillations is expressed by fourth-order differential equations. Such problems arise in the design of heavy equipment. To construct a solution, the Dirichlet formula for the double integral was applied, as a result of which the Volterra integral equations with three unknowns are obtained. The Dirichlet formula was used to solve the Abel problem. In conclusion, the main theorem was proved on the existence of a solution to the inverse problem that satisfies the above conditions.

References

Мамытов, А.О. Разрешимость обратной начально-краевой задачи с известным значением на прямой [Текст] / А.О. Мамытов // Вестник ЮУрГУ. Серия «Математика. Механика. Физика». – 2021. – Т. 13, - № 2. – С. 18–23. DOI: https://doi.org/10.14529/mmph210204

Кабанихин, С.И. Обратные и некорректные задачи [Текст] / С.И. Кабанихин.- Новосибирск: Сиб. науч. изд-во, 2009. – 457 с.

Лаврентьев, М. М. Некорректные задачи математической физики и анализа [Текст] / М.М. Лаврентьев, В.Г. Романов, С.П. Шишатский. - М.: Наука, 1980. - 286 с.

Khalmatov, A. A. Spice of solutions to singularly perturbed equations / A. A. Khalmatov, K. A. Abbazova, G. Kanybek K, A. Baltabaev // Science. Education. Engineering. – 2022. – No. 3(75). – P. 57-63. – DOI 10.54834/16945220_2022_3_57. – EDN QCRAZR. DOI: https://doi.org/10.54834/16945220_2022_3_57

Halmatov, A. A. Construction of the asymptotic of the solution of a singularly perturbed partial differential equation with a special Lin / A. A. Halmatov, N. Nishanbaeva, K. A Absatar // Science. Education. Engineering. – 2021. – No. 3(72). – P. 29-33. – DOI 10.54834/16945220_2021_3_29. – EDN UHGWZY. DOI: https://doi.org/10.54834/16945220_2021_3_29

Tursunov D.A., Orozov М.О., Кhalmatov А.А. Asymptotics of the Solution to the Boundary-Value Problems with Non Smooth Coefficient // Lobachevskii Journal of Mathematics. – 2020. – Vol. 41. – No. 6. –P. 1115-1122. DOI: https://doi.org/10.1134/S1995080220060177

Published

2022-12-20

How to Cite

Khalmatov, A., Kalandarova, Z., & Kanybek kyzy, G. (2022). INVERSE PROBLEM OF FINDINING THE RIGHT-HAND SIDE OF THE PARTIAL DIFFERENTIAL EQUATION IN FOURTH-ORDER . Journal of Osh State University. Mathematics. Physics. Technical Sciences, (1), 58–66. https://doi.org/10.52754/16948645_2022_1_6