ON THE SOLVABILITY OF THE CAUCHY-BELLMAN PROBLEM FOR NONLINEAR OPTIMIZATION OF OSCILLATORY PROCESSES
DOI:
https://doi.org/10.52754/16948645_2024_2(5)_22Keywords:
Functional, Frechet differential, generalized solution, synthesis problem, Dirac functionAbstract
When solving the problem of optimal process control, a distinction is made between the cases of programmatic optimal control and the synthesis of optimal control. In program control, optimal control is defined as a function of the independent variables of the problem. With this approach, research was carried out based on the maximum principle (in the case of ordinary differential equations – L.S. Pontryagin’s principle, in the case of systems with distributed parameters, the maximum principle of Pontryagin type, A.G. Butkovsky, A.I. Egorov, T.K. Sirazetdinov, V.I. Plotnikov) [1]. Control problems where it is necessary to synthesize optimal control are solved mainly by the dynamic programming method, which is based on the Bellman optimality principle. In this case, the desired optimal control should be found as a function (or functional) of the independent variables of the problem and the state of the controlled process.
References
А. Kerimbekov, O., Tairova (2018). On the solvability of synthesis problem for optimal point control of oscillatory processes. ] IFAC-PapersOnLine: 17th IFAC workshop on control applications of optimization, Vol. 51, №32, pp. 754-758. Available at: https://doi.org/10.1016/j.ifacol.2018.11.455
Сиразетдинов, Т.К. (1977). Оптимизация систем с распределенными параметрами. Москва: Главная редакция физико-математической литературы.
Беллман, Р. (1960). Динамическое программирование. Москва: ИЛ.
Люстерник, Л.А., Соболев В.И. (1965). Элементы функционального анализа. Москва: Наука.
Егоров, А.И. (1988). Оптимальное управление линейными системами. Киев: Высшая школа.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.