SYNTHESIS OF OPTIMAL BOUNDARY CONTROL WHEN MINIMIZING OF THERMAL PROCESSES
DOI:
https://doi.org/10.52754/16948645_2024_2(5)_18Keywords:
Boundary value problem, generalized solution, functional, Bellman-Egorov scheme, Bellman-type integro-differential equation, synthesis of boundary controlAbstract
The paper studies the solvability of the optimal boundary control synthesis problem in the optimization of thermal processes described by partial integro-differential equations. The case when the function of the boundary action depends nonlinearly on the control function is considered. An algorithm for constructing a synthesizing optimal control has been developed. The structure of the solution to a nonlinear integro-differential equation of Bellman type is determined.
References
Egorov A.I. Optimal stabilization of systems with distributed parameters // Optimization Techniques IFIP Technical Conference (1974) / ed. G.I. Marchuk. Novosibirsk, 1974. Berlin; Heidelberg: Springer, 1975. P. 167–172 . (Lecture Notes in Computer Science; vol 27). doi: 10.1007/3-540-07165-2_22 .
Керимбеков А. О разрешимости задачи синтеза распределенного и граничного управлений при оптимизации колебательных процессов //Труды института математики и механики. Уральское Отделение Российской Академии Наук 2021 С-128-140
Керимбеков А. Синтез распределенного оптимального управления в задаче слежения при оптимизации тепловых процессов, описываемых интегро-дифференциальными уравнениями //Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. Том 183 (2020). DOL:10/36535/0233-6723-2020-283-85-97. С. 85-97
Kerimbekov А., Abdyldaeva E. On the solvability of a nonlinear optimization problem for thermal processes described by Fredholm integro-differential equations with external and boundary controls // Applied Mathematics & Information Sciences, An International Journal - 2016, Vol. 10, No. I, P. 215-223.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.