ON THE FORMULATION AND STUDY OF A BOUNDARY VALUE PROBLEM FOR A FOURTH-ORDER EQUATION OF PARABOLIC-HYPERBOLIC TYPE IN A MIXED PENTAGONAL DOMAIN
DOI:
https://doi.org/10.52754/16948645_2024_2(5)_14Keywords:
Differential and integral equations, solution construction method, continuation method, boundary value problem, parabolic-hyperbolic typeAbstract
In this paper, we pose and study a boundary value problem for a fourth-order parabolic-hyperbolic equation in a mixed domain with three lines of type change. We prove a theorem on the unique solvability of this problem. In proving this theorem, we apply methods of constructing a solution, differential and integral equations, and the continuation method.
References
Джураев Т.Д., Мамажанов М. Краевые задачи для одного класса уравнений четвертого порядка смешанного типа. Дифференц. уравнения, 1986, т.22, №1, с.25-31.
Джураев Т.Д., Сопуев А., Мамажанов М. Краевые задачи для уравнений параболо-гиперболического типа. Ташкент, Фан, 1986, 220 с.
Мамажанов М., Шерматова Х.М. О некоторых краевых задачах для одного класса уравнений третьего порядка параболо-гиперболического типа в треугольной области с тремя линиями изменения типа. Наманган Давлат университети илмий ахборотномаси. Наманган, 2022 й., 2-сон, 41-51 б.
Mamajonov M., Shermatova X.M. On a boundary value problem for a third-order equation of the parabolic-hyperbolic type in a triangular domain with three type change lines. ISSN 1990-4789, Journal of applied and industrial mathematics. 2022, vol. 16, no. 3, pp. 481-489.
Мамажанов М., Шерматова Х.М. Об одной краевой задаче для уравнения третьего порядка параболо-гиперболического типа в треугольной области с тремя линиями изменения типа уравнения. Сибирский журнал индустриальной математики, 2022, 25(3), с. 93-103.
Mamajonov M., Shermatova Kh.M., Mukhtorova T. On a boundary value problem for a parabolic-hyperbolic equation of the third-order, when the characteristic of the first order operator is parallel to the yordinate axis. International journal of social science and interdisciplinary research. 2022, ISSN, 2277-3630 Impact factor: 7.429, 11, pp. 105-110.
Mamajonov M., Shermatova H.M. Statement and study of a boundary value problem for a third-order equation of parabolic-hyperbolic type in a mixed pentagonal domain, when the slope of the characteristic of the operator the first order is greater than one. International journal of research in commerce., IT, engineering and social sciences. ISSN: 2349-7793 Impact Factor: 6.876., Volume: 16 Issue: 05 in May 2022. pp. 117-130.
Mamajonov M., Yu.Kharimova. On one boundary problem for one parabolic-hyperbolic equation of the third order in a quadrangular domain with two lines type changes. Galaxy international interdisciplinary research journal (GIIRJ) ISSN (E): 2347-6915, Vol. 10, Issue 12, Dec. (2022), pp. 68-77.
Mamajonov M., Aroev D.D., Shermatova G. Statement and investigation of one boundary problem for one parabolic-hyperbolic equation of the third order in a pentagonal domain with three lines of type change. Galaxy international interdisciplinary research journal (GIIRJ) ISSN (E): 2347-6915, Vol. 10, Issue 12, Dec. (2022), pp. 332-342.
Mamajonov M., Turdiboeva M.M. On one boundary problem for a parabolic-hyperbolic equation of the third order, when characteristics of the first order operator parallel to the X-axis. Galaxy international interdisciplinary research journal (GIIRJ), ISSN (E): 2347-6915, Vol. 10, Issue 12, Dec. (2022), pp. 343-349.
Мамажанов М. О некоторых краевых задачах для одного класса уравнений третьего порядка параболо-гиперболического типа в треугольной области с тремя линиями изменения типа. Сборник международной научной конференции «Актуальные проблемы математики и образования», Ош ГУ, г. Ош., 12-13 мая, 2023 г., с. 120-132.
Mamazhonov M., Mamazhonov S.M., Mamadalieva Kh. B. Some boundary value problems for a third-order parabolic-hyperbolic equation in a pentagonal domain. Bulletin KRASEC. Physical and Mathematical Sciences. 2016, 13 (2), pp. 31-38.
Apakov, Y.P., Mamajonov, S.M. Boundary-Value Problem for the Fourth-Order Equation with Multiple Characteristics in a Rectangular Domain // Journal of Mathematical Sciences. 2023, 272(2), p. 185-201. https://doi.org/10.1007/s10958-023-06409-x
Apakov, Y.P., Mamazhonov, S.M. Boundary Value Problem for an Inhomogeneous Fourth-Order Equation with Lower-Order Terms // Differential Equations. 2023, 59(2), p. 188-198. https://doi.org/10.1134/S0012266123020040
Apakov, Y.P., Mamajonov, S.M. Boundary value problem for a inhomogeneous fourth order equation with constant coefficients // Chelyabinsk Physical and Mathematical Journal. 2023, 8(2), p. 157-172. https://doi.org/10.47475/2500-0101-2023-18201
Apakov, Y.P., & Mamajonov, S.M. (2022). Boundary Value Problem for a Fourth-Order Equation of the Parabolic-Hyperbolic Type with Multiple Characteristics with Slopes Greater Than One. Russian Mathematics, 66(4), 1-11. https://doi.org/10.3103/S1066369X22040016
Apakov, Y.P., & Mamajonov, S.M. (2021). Solvability of a Boundary Value Problem for a Fourth Order Equation of Parabolic-Hyperbolic Type in a Pentagonal Domain. Journal of Applied and Industrial Mathematics, 15(4), 586-596. https://doi.org/10.1134/S1990478921040025
Apakov, Y.P., & Mamajonov, S.M. (2024). Boundary Value Problem for Fourth Order Inhomogeneous Equation with Variable Coefficients. Journal of Mathematical Sciences (United States), 284(2), 153–165. https://doi.org/10.1007/s10958-024-07340-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.