APPLICATION OF THE METHOD OF DECOMPOSITION INTO EXPONENTIAL SERIES BASED ON THE SPECTRAL PARAMETER IN EIGENVALUE PROBLEMS
DOI:
https://doi.org/10.52754/16948645_2024_2(5)_10Keywords:
Sturm-Liouville operator, spectral analysis, exponential seriesAbstract
The article explores the application of exponential series based on the spectral parameter to solve eigenvalue problems of Sturm-Liouville operators. A novel approach for decomposing the characteristic determinant into exponential series is proposed, demonstrating effectiveness for computing large eigenvalues. The theoretical framework is supported by asymptotic formulas for eigenvalues and eigenfunctions. Practical methods for achieving higher computational precision are also discussed. The work is based on an extension of earlier methods and offers new perspectives for numerical analysis in mathematical physics.
References
Левитан Б.М., Саргсян И.С. Введение в спектральную теорию. Самосопряженные обыкновенные дифференциальные операторы. Москва: Наука, 1970. 672 стр.
Bondarenko N. An inverse problem for Sturm-Liouville operators on trees with partial information given on the potentials. // Math. Meth. Appl. Sci. - 2018. - Vol. 41.
Bondarenko N. Inverse problem for a differential operator on a star-shaped graph with nonlocal matching condition.
Law C., Pivovarchik V. Characteristic functions on quantum graphs // J. Phys. A: Math. Theor. 2009.
R. Carlson, V. Pivovarchik. Spectral asymptotics for quantum graphs with equal edge lengths. J. Phys. A: Math. Theor. 41 (2008) 145202, 16 pp.
V.V. Kravchenko, R.M. Porter, Spectral parameter power series for Sturm–Liouville problems. Math. Method Appl. Sci. 33, 459–468 (2010).
Berkolaiko G., Carlson R., Fulling S., Kuchment P. Quantum Graphs and Their Applications // Amer. Math. Soc. 2006.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.