THE SECOND BOUNDARY VALUE PROBLEM FOR A PSEUDO-PARABOLIC EQUATION OF THE THIRD ORDER WITH A FRACTIONAL DERIVATIVE AND WITH A BESSEL OPERATOR
DOI:
https://doi.org/10.52754/16948645_2024_1(4)_45Keywords:
pseudoparabolic equation, boundary value problems, fractional order differential equation, Caputo fractional derivative, Riemann-Liouville fractional integral, Fourier method, Mittag-Leffler functionAbstract
At present, in connection with the problems of heat transfer in a heterogeneous environment, moisture transfer in soil, nonstationary filtration process in a fractured-porous medium, and a number of other problems, interest in the study of initial-boundary value and boundary value problems for non-classical partial differential equations has increased significantly. Such non-classical equations include equations of pseudoparabolic type.
In a rectangular domain, the second initial-boundary value problem for a homogeneous third-order pseudoparabolic equation with a time-fractional Caputo derivative and a Bessel operator with respect to another variable is studied. Conditions for the unique solvability of the problem considered in the class of continuously differentiable functions are established. The existence of a solution to the second boundary value problem is proved by the Fourier method.
References
Kilbas A.A., Srivastava H.M. and Trujillo J.J. “Teory and Applications of Fractional Differential Equations,” North-Holland Mathematics Studies, Vol. 204, 2006.
Miller K.S. and. Ross B. “An Introduction to the Fractional Calculus and Fractional Differential Equations,” John Wiley, New York, 1993.
Podlubny I. “Fractional Differential Equations,” Academic Press, San Diego, New York, London, 1999.
Самко С.Г., Килбас А.А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения.- Минск: Наука и техника, 1987.— 688 с.
Джарбашян М.М. Интегральные преобразования и представления функций в комплексной области. М., 1966.-672с.
Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.
Учайкин В.В. Метод дробных производных. Ульяновск: Артишок, 2008. 512 с.
Псху А.В. Уравнения в частных производных дробного порядка. М.: Наука. 2005. 199 с.
Аблабеков, Б.С. Обратные задачи для псевдопараболических уравнений.-Бишкек: Илим, 2001.-183 с.
Аблабеков, Б.С. Метод полуобращения и существование решений начальной, начально-краевой задачи // Наука и новые технологии.-1999.- № 4.- С. 12–19.
Karimov Sh.T. Method of Solving the Cauchy Problem for One-Dimensional Polywave Equation With Singular Bessel Operator. Russian Mathematics, 2017, Vol. 61, No. 8, pp. 22–35. DOI: 10.3103/S1066369X17080035. DOI: https://doi.org/10.3103/S1066369X17080035
Karimov Sh.T. On Some Generalizations of Properties of the Lowndes Operator and their Applications to Partial Differential Equations of High Order Filomat 2018 Volume 32, Issue 3, Pages: 873-883 https://doi.org/10.2298/FIL1803873K. DOI: https://doi.org/10.2298/FIL1803873K
Каримов Ш.Т, Юлбарсов Х.А. Аналог задачи Гурса для одного псевдопараболического уравнения третьего порядка. «Стохастик таҳлилнинг долзарб муаммолари» конференция. Тошкент. 2021 г. 309-311 с.
Watson G
.N. A Treatise on the Theory of Bessel Functions. Cambridge, Cambridge University Press, 1922.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.