CONSTRUCTION OF THE SET OF ALL COUNTABLY PARACOMPACT EXTENSIONS
DOI:
https://doi.org/10.52754/16948645_2024_1(4)_19Keywords:
countably paracompact extensions, sequentially completeness, Dieudonne sequentially completeness, countably preparacompactness, preuniversalityAbstract
One of the central theme in general topology is the theme related to various types of extensions of topological spaces. M. Stone noted that one of the interesting and difficult problems of general topology is the study of all extensions of a given topological spaces. Based on the general problem of M. Stone, B. Banashevsky systematized the general problems of the theory of extensions. P.S. Aleksandfoff posed the problem of classifying compact extensions and formulated various general problems on extensions of topological spaces. A.A. Borubaev, using uniformity, constructed the sets of all paracompact, strongly paracompact, Lindelof and Dieudonne complete extensions of Tychonoff spaces. In this paper, using uniform structures, we construct the sets of all countably paracompact extensions.
References
Борубаев А.А. Равномерные пространства и равномерно непрерывные отображения. Фрунзе: Илим, 1990.
Канетов Б.Э. Некоторые классы равномерных пространств и равномерно непрерывных отображений. Бишкек: КНУ им. Ж. Баласагына, 2013.
Borubaev A.A. Uniform topology and its applications. Bishkek, Ilim, 2021.
Kanetov B., Kanetova D. Characterization of some types of compactness and a construction of index compactness extensions by means of uniform structures. AIP Cof. Proc., Melville. – New York. – 2018. – Vol. 1997. – P. 1-5. DOI: https://doi.org/10.1063/1.5049017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.