ASYMPTOTICAL EQUIVALENCE OF SOLUTIONS IN THE THEORY OF DYMAMICAL SYSTEMS

Authors

  • Zhumagul Zheentaeva KUIU named after B. Sydykov

DOI:

https://doi.org/10.52754/16948645_2024_1(4)_15

Keywords:

equivalence relation, quotient space, asymptotical equivalence, differential equation, initial value problem

Abstract

In the paper, the following equivalence relations in spaces of solutions of initial value problems for dynamical systems are proposed. The asymptotical equivalence relation: distance between two solutions tends to zero while time increases, the corresponding quotient space was called “asymptotical quotient space“. The asymptotical exponential equivalence relation: distance between two solutions decreases exponentially while time increases, the corresponding quotient space was called “asymptotical exponential quotient space“. The Hausdorff asymptotical equivalence relation: distance between two solutions with invertible transformation of argument tends to zero while time increases; the corresponding quotient space is called “Hausdorff asymptotical quotient space“. It is demonstrated that the notion of the Hausdorff asymptotical quotient spaces generate new mathematical objects.

References

Мышкис А.Д. Линейные дифференциальные уравнения с запаздывающим аргументом. – Москва: Наука, 1972. – 351 с.

Панков П.С. Асимптотическая конечномерность пространства решений одного класса систем с запаздыванием // Дифференциальные уравнения. – 1977. – том 13, № 4. – С. 455-462.

Жээнтаева Ж.К. Асимптотика решений систем линейных операторно-разностных уравнений с переменными коэффициентами // Вестник Кыргызско-Российского Славянского университета. Серия естественные и технические науки. – 2016, № 5. – C. 34-37.

Mallet-Paret J., Nussbaum R. D. Asymptotic homogenization for delay-differential equations and a question of analyticity // Discrete and Continuous Dynamical Systems. – 2020, vol. ‏ 40, issue ‏ 6. – P. 3789-3812. DOI: https://doi.org/10.3934/dcds.2020044

Feher A., Marton L., Pituk M. Approximation of a Linear Autonomous Differential Equation with Small Delay // Symmetry-Basel, 2019, vol.‏ 11, issue ‏ 10. – 10 p. DOI: https://doi.org/10.3390/sym11101299

Ye Yu., Liang H. Asymptotic dichotomy in a class of higher order nonlinear delay differential equations // Journal of Inequalities and Applications. – 2019, vol. 2. – 17 p. DOI: https://doi.org/10.1186/s13660-018-1949-7

Published

2024-06-11

How to Cite

Zheentaeva, Z. (2024). ASYMPTOTICAL EQUIVALENCE OF SOLUTIONS IN THE THEORY OF DYMAMICAL SYSTEMS. Journal of Osh State University. Mathematics. Physics. Technical Sciences, (1(4), 78–82. https://doi.org/10.52754/16948645_2024_1(4)_15