ON A LINEAR INVERSE PROBLRM FOR A THREE-DIMENTIONAL MIXED TYPE SECOND ORDER EQUATION WITH A SEMI-NONLOCAL BOUNDARY CONDITION OF A PERIODIC TYPE IN AN UNBOUNDED PARALLELEPIPED
DOI:
https://doi.org/10.52754/16948645_2024_1(4)_12Keywords:
generalized solutions, second-order mixed-type equation, semi-nonlocal boundary value problem, Fourier transform, the methods of “ε -regularization” and a priori estimatesAbstract
For equations of mixed type of the second kind in unbounded domains, nonlocal boundary value problems in the multidimensional case are practically not studied.
To prove the uniqueness of the generalized solution, the method of energy is used. To prove the existence of a generalized solution, the Fourier transform is first used, and as a result, a new problem in the plane is obtained, and for the solvability of this problem, the methods of “ε -regularization” and a priori estimates are used. Using these methods and Parseval’s equality, we prove the uniqueness, existence and smoothness of a generalized solution of a non-local boundary value problem of periodic type for a three-dimentional mixed-type equation of the second kind of the second order.
References
Врагов, В.Н. Краевые задачи для неклассических уравнений математической физики / В.Н. Врагов. - Новосибирск: НГУ, 1983. 216 с.
Джамалов, С.З. Нелокальные краевые и обратные задачи для уравнений смешанного типа: монография / С.З. Джамалов. - Ташкент. 2021. 176 с.
Лаврентьев, М.М. Многомерные обратные задачи для дифференциальных уравнений / М.М. Лаврентьев, В.Г. Романов, В.Г. Васильев. - Новосибирск. Наука, 1969. 67 c.
S.Z. Dzhamalov. The Linear Inverse Problem for the Three- Dimensional Tricomi Equation in a Prismatic Unbounded Domain / S.Z. Dzhamalov, R.R. Ashurov, Kh.Sh. Turakulov // Lobachevskii Journal of Mathematics. 2021. Т.42. №15. P. 3606-3615.
S.Z. Dzhamalov, M.G. Aliev, Kh.Sh. Turakulov. On a linear inverse problem for the three-dimensional Tricomi equation with nonlocal boundary conditions of periodic type in a prismatic unbounded domain / S.Z. Dzhamalov, M.G. Aliev, Kh.Sh. Turakulov // Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math. 2022. Т.42. №1. P.1-12. DOI: https://doi.org/10.1134/S1995080222030064
Нахушев А. М. Нагруженные уравнения и их приложения / А. М. Нахушев // Дифференц, уравнения. 1983. Т.19. №1. С.86-94.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.