BRANCHING OF PERIODIC SOLUTIONS TO SYSTEMS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
DOI:
https://doi.org/10.52754/16948645_2024_1(4)_7Keywords:
nonlinear partial differential equations of the second order, analytic function, periodic solutionAbstract
In this work, it was investigated that if the function is analytical in terms of the arguments , then using the residue method it is shown that, for >1, the unknown n-dimensional vector C has a small solution. Then the problem (1) either has a unique periodic solution, since the set of periodic solutions with period in t expands in integer and fractional powers of the parameter.
References
Боташев А.И. Периодические решения интегро-дифференциальных уравнений Вольтерра // Москва:Изд-во МФТИ, 1998. – 90 с.
Боташев А.И., Артыков А.Ж. Метод выделения особенностей в теории возмущений .// Исслед.по интегро-дифференц.уравнениям. – Бишкек: Илим,1994. – Вып.25. – С. 211-221.
Артыков А.Ж. Вычетный метод для линейных интегральных уравнений Фрегольма. // Вестник Кыргызск.гос.нац.ун-та, Серия естественно-тех. науки. –Бишкек,1997. – Вып.1. – С. 214-216.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.