NANODEVICE-BASED GENOME EDITING TO ENHANCE CRISPR/CAS9 STABILITY AND EFFICIENCY

Authors

  • G.K . Mote State Agriculture University, Akola-444104
  • P.V. Jadhav State Agriculture University, Akola-444104
  • S.S. Pawar State Agriculture University, Akola-444104
  • S.P. Nagrale State Agriculture University, Akola-444104
  • A. Mahobia State Agriculture University, Akola-444104
  • U.D. Shinde State Agriculture University, Akola-444104
  • M.P. Moharil State Agriculture University, Akola-444104
  • S.D. Jadhao State Agriculture University, Akola-444104
  • S.B. Sakhare State Agriculture University, Akola-444104
  • . Ghorade Ghorade State Agriculture University, Akola-444104
  • S.S. Mane State Agriculture University, Akola-444104
  • Deshmukh Panjabrao State Agriculture University, Akola-444104
  • R.G. Dani Termez State University

DOI:

https://doi.org/10.52754/16948688_2022_1_8

Keywords:

crispr/cas, nanotechnology, crispr/cas9, delivery

Abstract

Since a decade ago, the importance of CRISPR and the CRISPR-associated system (Cas) in the field of genome modification has increased. The limited intracellular delivery effectiveness of this method makes it difficult to transport Cas payloads and sgRNA despite its adaptability. Nanomaterials including liposomes, polymers, gold nanoparticles, and inorganic nanoparticles have been used successfully for gene transfer. Here, we briefly cover the many CRISPR/Cas delivery systems and their related difficulties, then we go through the different nanotechnological ways for CRISPR/Cas delivery, and look at the numerous issues that CRISPR-based plant genome editing encounters. It also covered the challenges of delivering CRISPR/Cas9 utilising nanotechnology and the regions that must be targeted to benefit from this editing approach.

References

Aggarwal, P., Hall, J.B., McLeland, C.B., Dobrovolskaia, M.A. and McNeil, S.E., 2009. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced drug delivery reviews, 61(6).

Alghuthaymi, M.A., Ahmad, A., Khan, Z., Khan, S.H., Ahmed, F.K., Faiz, S., Nepovimova, E., Kuca, K. and Abd-Elsalam, K.A., 2021. Exosome/liposome-like nanoparticles: new carriers for crispr genome editing in plants. International Journal of Molecular Sciences, 22(14).

Chandrasekaran, A.P., Song, M., Kim, K.S. and Ramakrishna, S., 2018. Different methods of delivering CRISPR/Cas9 into cells. Progress in molecular biology and translational science, 159.

Charpentier, E., 2017. Gene Editing and Genome Engineering with CRISPR-Cas9. Molecular Frontiers Journal, 1(02), pp.99-107.

Chew, W.L., Tabebordbar, M., Cheng, J.K., Mali, P., Wu, E.Y., Ng, A.H., Zhu, K., Wagers, J.and Church, G.M., 2016. A multifunctional AAV-CRISPR-Cas9 and its host response. Nature methods, 13(10).

Demirer, G.S., Silva, T.N., Jackson, C.T., Thomas, J.B., W Ehrhardt, D., Rhee, S.Y., Mortimer, J.C. and Landry, M.P., 2021. Nanotechnology to advance CRISPR- Cas genetic engineering of plants. Nature Nanotechnology, 16(3).

Demirer, G.S., Zhang, H., Matos, J.L., Goh, N.S., Cunningham, F.J., Sung, Y., Chang, R., Aditham, A.J., Chio, L., Cho, M.J. and Staskawicz, B., 2019. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature nanotechnology, 14(5).

Demirer, Gozde S., Huan Zhang, Natalie S. Goh, Rebecca L. Pinals, Roger Chang, and Markita P. Landry. "Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown." Science advances 6, no. 26 (2020): eaaz0495.

Deng, H., Huang, W. and Zhang, Z., 2019. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. Nano Research, 12(10).

Duan, L., Ouyang, K., Xu, X., Xu, L., Wen, C., Zhou, X., Qin, Z., Xu, Z., Sun, W. and Liang, Y., 2021. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Frontiers in Genetics, 12.

Durieux, A.C., Bonnefoy, R., Busso, T. and Freyssenet, D., 2004. In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage. The Journal of Gene Medicine: A cross- disciplinary journal for research on the science of gene transfer and its clinical applications, 6(7).

Fu, A., Tang, R., Hardie, J., Farkas, M.E. and Rotello, V.M., 2014. Promises and pitfalls of intracellular delivery of proteins. Bioconjugate chemistry, 25(9).

Hendel, A., Bak, R.O., Clark, J.T., Kennedy, A.B., Ryan, D.E., Roy, S., Steinfeld, I., Lunstad, D., Kaiser, R.J., Wilkens, A.B. and Bacchetta, R., 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature biotechnology, 33(9).

Hu, P., An, J., Faulkner, M.M., Wu, H., Li, Z., Tian, X. and Giraldo, J.P., 2020. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS nano, 14(7).

Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S. and Kaplan, M., 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343(6176).

Kobayashi, H., Watanabe, R. and Choyke, P.L., 2014. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?.Theranostics, 4(1).

Kwak, S.Y., Lew, T.T.S., Sweeney, C.J., Koman, V.B., Wong, M.H., Bohmert-Tatarev, K., Snell, K.D., Seo, J.S., Chua, N.H. and Strano, M.S., 2019. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single¬walled carbon nanotube carriers. Nature nanotechnology, 14(5).

Lee, K., Conboy, M., Park, H.M., Jiang, F., Kim, H.J., Dewitt, M.A., Mackley, V.A., Chang, K., Rao, A., Skinner, C. and Shobha, T., 2017. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature biomedical engineering, 1(11).

Levy, R., Shaheen, U., Cesbron, Y. and See, V., 2010. Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1: 4889. Li, L., He, Z.Y., Wei, X.W., Gao, G.P. and Wei, Y.Q., 2015. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Human gene therapy, 26(7), pp.452-462. Li, L., Hu, S. and Chen, X., 2018. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials, 171.

Lino, C.A., Harper, J.C., Carney, J.P. and Timlin, J.A., 2018. Delivering CRISPR: a review of the challenges and approaches. Drug delivery, 25(1), pp.1234-1257. Martin-Ortigosa, S., Peterson, D.J., Valenstein, J.S., Lin, V.S.Y., Trewyn, B.G., Lyznik, L.A. and Wang, K., 2014. Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant physiology, 164(2).

Nisini, R., Poerio, N., Mariotti, S., De Santis, F. and Fraziano, M., 2018. The multirole of liposomes in therapy and prevention of infectious diseases. Frontiers in Immunology, 9.

Santana, I., Wu, H., Hu, P. and Giraldo, J.P., 2020. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nature communications, 11(1).

Sokotowska, E. and Btachnio-Zabielska, A.U., 2019. A critical review of electroporation as a plasmid delivery system in mouse skeletal muscle. International journal of molecular sciences, 20(11).

Sun, W., Ji, W., Hall, J.M., Hu, Q., Wang, C., Beisel, C.L. and Gu, Z., 2015. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angewandte Chemie, 127(41).

Wang, H.X., Li, M., Lee, C.M., Chakraborty, S., Kim, H.W., Bao, G. and Leong, K.W., 2017. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemical reviews, 117(15).

Wang, M., Zuris, J.A., Meng, F., Rees, H., Sun, S., Deng, P., Han, Y., Gao, X., Pouli, D., Wu, Q. and Georgakoudi, I., 2016. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proceedings of the National Academy of Sciences, 113(11).

Wang, P., Zhang, L., Zheng, W., Cong, L., Guo, Z., Xie, Y., Wang, L., Tang, R., Feng, Q., Hamada, Y. and Gonda, K., 2018. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angewandte Chemie International Edition, 57(6).

Wei, T., Cheng, Q., Min, Y.L., Olson, E.N. and Siegwart, D.J., 2020. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nature communications, 11(1).

Yip, B.H., 2020. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules, 10(6), p.839. Yue, H., Zhou, X., Cheng, M. and Xing, D., 2018. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale, 10(3).

Zhang, Z., Wan, T., Chen, Y., Chen, Y., Sun, H., Cao, T., Songyang, Z., Tang, G., Wu, C., Ping, Y. and Xu, F.J., 2019. Cationic polymer-mediated CRISPR/Cas9 plasmid delivery for genome editing. Macromolecular rapid communications, 40(5).

Zuris, J.A., Thompson, D.B., Shu, Y., Guilinger, J.P., Bessen, J.L., Hu, J.H., Maeder, M.L., Joung, J.K., Chen, Z.Y. and Liu, D.R., 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature biotechnology, 33(1),

Downloads

Published

2022-12-26

How to Cite

Mote, G. ., Jadhav, P., Pawar, S., Nagrale, S., Mahobia, A., Shinde, U., Moharil, M., Jadhao, S., Sakhare, S., Ghorade, . G., Mane , S., Panjabrao, D., & Dani, R. (2022). NANODEVICE-BASED GENOME EDITING TO ENHANCE CRISPR/CAS9 STABILITY AND EFFICIENCY. Journal of Osh State University. Chemistry. Biology. Geography, (1), 58–73. https://doi.org/10.52754/16948688_2022_1_8