STABILITY OF THE TIME-DEPENDENT IDENTIFICATION PROBLEM FOR A FRACTIONAL TELEGRAPH EQUATION WITH THE CAPUTO DERIVATIVE
STABILITY OF THE TIME-DEPENDENT IDENTIFICATION PROBLEM FOR A FRACTIONAL TELEGRAPH EQUATION WITH THE CAPUTO DERIVATIVE
DOI:
https://doi.org/10.52754/16948645_2023_2_166Ключевые слова:
Телеграфное уравнение, гильбертово пространство, самосопряженный, положительный оператор, производная КапутоАннотация
The telegraph equation , in a Hilbert space is investigated. Here is a self-adjoint, positive operator, is the Caputo derivative. An inverse problem is considered in which, along with , also a time varying factor of the source function is unknown. To solve this inverse problem, we take the additional condition with an arbitrary bounded linear functional .Existence and uniqueness theorem for the solution to the problem under consideration is proved. Inequalities of stability are obtained.
Библиографические ссылки
Pskhu A.V. Fractional Differential Equations. Moscow: NAUKA. 2005 [in Russian].
Ashyralyev.A., Al-Hazaimeh.M. Stability of the time-dependent identication problem for the Telegraph equation with involution, International Journal of Applied Mathematics, 35, 3, 447--459 ,(2022). DOI: https://doi.org/10.12732/ijam.v35i3.7
Cascaval. R., Eckstein.E., Frota.C., Goldstein.A.,, Fractional telegraph equations, J. Math. Anal. Appl. 276, 145-159 (2002). DOI: https://doi.org/10.1016/S0022-247X(02)00394-3
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Вестник Ошского государственного университета. Математика. Физика. Техника
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.