NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEM FOR A SECOND ORDER IMPULSIVE SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS WITH MIXED MAXIMA

NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEM FOR A SECOND ORDER IMPULSIVE SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS WITH MIXED MAXIMA

Авторы

  • Кудратиллаевич Ташкентский государственный экономический университет Ташкент, Узбекистан

DOI:

https://doi.org/10.52754/16948645_2023_2_208

Ключевые слова:

система второго порядка, импульсные интегро-дифференциальные уравнения, двухточечные нелинейные краевые условия, смешанные максимумы, последовательные приближения, существование и единственность решения

Аннотация

Исследуется двухточечная нелинейная краевая задача для системы обыкновенных интегро-дифференциальных уравнений второго порядка с импульсными эффектами и смешанными максимумами. Путем применения некоторых преобразований получается система нелинейных функциональных интегральных уравнений. Существование и единственность решения непериодической двухточечной краевой задачи сводятся к однозначной разрешимости системы нелинейных функциональных интегральных уравнений в Банаховом пространстве . Метод последовательных приближений в сочетании с методом сжимающих отображений используется при доказательстве однозначной разрешимости нелинейных функциональных интегральных уравнений.

Библиографические ссылки

Anguraj A., Arjunan M. M. Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Elect. J. Differential Equations, 2005, vol. 2005, no. 111, pp. 1–8.

Ashyralyev A., Sharifov Ya. A. Existence and uniqueness of solutions for nonlinear impulsive differential equations with two–point and integral boundary conditions, Advances in Difference Equations, 2013, vol. 2013, no. 173. doi: 10.1186/1687-1847-2013-173. DOI: https://doi.org/10.1186/1687-1847-2013-173

Ashyralyev A., Sharifov Ya. A. Optimal control problems for impulsive systems with integral boundary conditions, Elect. J. of Differential Equations, 2013, vol. 2013, no. 80, pp. 1–11. DOI: https://doi.org/10.1186/1687-1847-2013-173

Bai Ch., Yang D. Existence of solutions for second-order nonlinear impulsive differential equations with periodic boundary value conditions, Boundary Value Problems (Hindawi Publishing Corporation), 2007, vol. 2007, no. 41589, pp. 1–13. doi: 10.1155/2007/41589. DOI: https://doi.org/10.1155/2007/41589

Bin L., Xinzhi L., Xiaoxin L. Robust global exponential stability of uncertain impulsive systems, Acta Mathematika Scientia, 2005, vol. 25, no. 1, pp. 161–169. DOI: https://doi.org/10.1016/S0252-9602(17)30273-4

Chen J., Tisdell Ch. C., Yuan R. On the solvability of periodic boundary value problems with impulse, J. of Math. Anal. and Appl., 2007, vol. 331, pp. 902–912. DOI: https://doi.org/10.1016/j.jmaa.2006.09.021

Hu Z., Han M. Periodic solutions and bifurcations of first order periodic impulsive differential equations, International Journal of Bifurcation and Chaos, 2009, vol. 19, no. 8, pp. 2515–2530. DOI: https://doi.org/10.1142/S0218127409024281

Lakshmikantham V., Bainov D. D., Simeonov P. S. Theory of impulsive differential equations, A, vol. 6. Singapore, World Scientific, 1989, 434 pp.. doi: 10.1142/0906. DOI: https://doi.org/10.1142/0906

Li X., Bohner M., Wang Ch.-K. Impulsive differential equations: Periodic solutions and applications, Automatica, 2015, vol. 52, pp. 173–178. DOI: https://doi.org/10.1016/j.automatica.2014.11.009

Mardanov M. J., Sharifov Ya. A., Habib M. H. Existence and uniqueness of solutions for first-order nonlinear differential equations with two-point and integral boundary conditions, Electr. J. of Differential Equations, 2014, vol. 2014, no. 259, pp. 1–8.

Samoilenko A. M., Perestyk N. A. Impulsive differential equations. World Scientific, A, vol. 14. Singapore, World Scientific, 1995, 462 pp.. doi: 10.1142/2892. DOI: https://doi.org/10.1142/2892

Sharifov Ya. A. Optimal control problem for systems with impulsive actions under nonlocal boundary conditions, Vestnik samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seria: Fiziko-matematicheskie nauki, 2013, vol. 33, no. 4, pp. 34–45 (in Russian). DOI: https://doi.org/10.14498/vsgtu1134

Sharifov Ya. A. Optimal control for systems with impulsive actions under nonlocal boundary conditions, Russian Mathematics (Izv. VUZ), 2013, vol. 57, no. 2 65–72. doi: 10.3103/S1066369X13020084. DOI: https://doi.org/10.3103/S1066369X13020084

Sharifov Ya. A., Mammadova N. B. Optimal control problem described by impulsive differential equations with nonlocal boundary conditions, Differential equations, 2014, vol. 50, no. 3, pp. 403–411. doi: 10.1134/S0012266114030148. DOI: https://doi.org/10.1134/S0012266114030148

Sharifov Ya. A. Conditions optimality in problems control with systems impulsive differential equations with nonlocal boundary conditions, Ukrainain Math. Journ., 2012, vol. 64, no. 6, pp. 836–847. DOI: https://doi.org/10.1007/s11253-012-0691-4

Yuldashev T. K. Periodic solutions for an impulsive system of nonlinear differential equations with maxima, Nanosystems: Phys. Chem. Math., 2022, vol. 13, no. 2, pp. 135–141. doi: 10.17586/2220-8054-2022-13-2-135-141. DOI: https://doi.org/10.17586/2220-8054-2022-13-2-135-141

Yuldashev T. K. Periodic solutions for an impulsive system of integro-differential equations with maxima, Vestnik Sam. Gos. Tekh. Univer. Seria: Fiziko-matematicheskie nauki, 2022, vol. 26, no. 2, pp. 368–379. doi:10.14498/vsgtu1917. DOI: https://doi.org/10.14498/vsgtu1917

Yuldashev T. K., Fayziyev A. K. On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima, Nanosystems: Phys. Chem. Math., 2022, vol. 13, no. 1, pp. 36–44. doi: 10.17586/2220-8054-2022-13-1-36-44. DOI: https://doi.org/10.17586/2220-8054-2022-13-1-36-44

Yuldashev T. K., Fayziyev A. K. Integral condition with nonlinear kernel for an impulsive system of differential equations with maxima and redefinition vector, Lobachevskii Journ. Math., 2022, vol. 43, no. 8, pp. 2332–2340. doi: 10.1134/S1995080222110312. DOI: https://doi.org/10.1134/S1995080222110312

Yuldashev T. K., Saburov Kh. Kh., Abduvahobov T. A. Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations with maxima, Chekyabinsk. Fiz.-Mat. Zhurn., 2022, vol. 7, no. 1, pp. 113–122. doi: 10.47475/2500-0101-2022-17108. DOI: https://doi.org/10.47475/2500-0101-2022-17108

Abildayeva A., Assanova A., Imanchiyev A. A multi-point problem for a system of differential equations with piecewise-constant argument of generalized type as a neural network model, Eurasian Math. Journ., 2022, vol. 13, no. 2, pp. 8–17. DOI: https://doi.org/10.32523/2077-9879-2022-13-2-08-17

Assanova A. T., Dzhobulaeva Z. K., Imanchiyev A. E. A multi-point initial problem for a non-classical system of a partial differential equations, Lobachevskii Journ. Math., 2020, vol. 41, no. 6, pp. 1031–1042. doi: 10.1134/S1995080220060049. DOI: https://doi.org/10.1134/S1995080220060049

Minglibayeva B. B., Assanova A. T. An existence of an isolated solution to nonlinear twopoint boundary value problem with parameter, Lobachevskii Journ. Math., 2021, vol. 42, no. 3, pp. 587–597. doi: 10.1134/S199508022103015X. DOI: https://doi.org/10.1134/S199508022103015X

Usmanov K. I., Turmetov B. Kh., Nazarova K. Zh. On unique solvability of a multipoint boundary value problem for systems of integro-differential equations with involution, Symmetry, 2022, vol. 14, no. 8 (1262), pp. 1–15. doi: 10.3390/sym14081626. DOI: https://doi.org/10.3390/sym14081626

Yuldashev T. K. On a nonlocal problem for impulsive differential equations with mixed maxima, Vestnik KRAUNTS. Seria: Fiziko-matematicheskie nauki, 2022, vol. 38, no. 1, pp. 40–53. DOI: https://doi.org/10.26117/2079-6641-2022-38-1-40-53

Загрузки

Опубликован

30-12-2023

Как цитировать

Файзиев, А. (2023). NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEM FOR A SECOND ORDER IMPULSIVE SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS WITH MIXED MAXIMA: NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEM FOR A SECOND ORDER IMPULSIVE SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS WITH MIXED MAXIMA. Вестник Ошского государственного университета. Математика. Физика. Техника, (2(3), 208–220. https://doi.org/10.52754/16948645_2023_2_208