ON THE PERIODIC SOLUTION OF THE KELLER-SEGEL MODEL OF CHEMOTAXIS WITH A LOGISTIC SOURCE
DOI:
https://doi.org/10.52754/16948645_2023_1_287Ачкыч сөздөр:
Keller–Segel model, chemotaxis, a priori estimates, global solution.Аннотация
The paper investigates a system of three parabolic equations, which is a model of the spatiotemporal state of two competing populations of species, both of which are chemotactically attracted by the same signal substance. Individuals move according to random diffusion and chemotaxis, and both populations reproduce themselves and mutually compete with each other according to the classical Lotka-Volterra kinetics. The global existence and uniqueness of the classical solutions of this system is proved by the contraction mapping principle using a priori Lp estimates and Schauder-type estimates for parabolic equations.
Библиографиялык шилтемелер
E. F. Keller., Initiation of slime mold aggregation viewed as an instability /E. F. Keller, L.A. Segel // J. Theoret. Biol. 26 .1970. pp.399–415 DOI: https://doi.org/10.1016/0022-5193(70)90092-5
T. Hillen, A users’ guide to PDE models for chemotaxis/ T. Hillen, K. Painter// J. Math. Biol. ,2009. V.58 . pp. 183–217. DOI: https://doi.org/10.1007/s00285-008-0201-3
J.Tello. Stabilization in a two-species chemotaxis system with a logistic
source/ J.Tello, M.Winkler// Nonlinearity.2012. v.25 .pp. 1413-1425. DOI: https://doi.org/10.1088/0951-7715/25/5/1413
Qi Wang . Global existence and steady states of a two competing species Keller -Segel chemotaxis model/ Qi Wang, Lu Zhang, Jingyue Yang and Jia Hu// American Institute of Math. Sc..2015.V. 8, N. 4, pp.777-807. DOI: https://doi.org/10.3934/krm.2015.8.777
O. A. Ladyzenskaja,.Linear and Quasi-Linear Equations of Parabolic Type/ O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva,, A M S. 1968, 648 p. DOI: https://doi.org/10.1090/mmono/023