Integral representation for hypergeometric function of the Mittag-Leffler type
Integral representation for hypergeometric function of the Mittag-Leffler type
DOI:
https://doi.org/10.52754/16948645_2023_2_220Ачкыч сөздөр:
Mittag-Leffler function, differential equations of fractional order, integral equations of fractional orderАннотация
The Mittag-Leffler function has gained importance and popularity through its applications. When solving differential equations of fractional order and integral equations of fractional order. Also, the Mittag-Leffler function plays an important role in various fields of applied mathematics and engineering sciences, such as chemistry, biology, statistics, thermodynamics, mechanics, quantum physics, computer science, signal processing [1-6].
Библиографиялык шилтемелер
Mittag–Leffler GM. Sur la nouvelle fonction . C R Acad Sci Paris. 1903;137:554–558.
Luchko Y. Initial boundary value problems for the generalized multiterm time fractional
diffusion equation. J Math Anal Appl. 2011; 374: 538–548. DOI: https://doi.org/10.1016/j.jmaa.2010.08.048
Li Z, Liu Y, Yamamoto M. Initial boundary value problems for multi-term time-fractional
diffusion equations with positive constant coefficients. Appl Math Comput. 2015; 257:381–397. DOI: https://doi.org/10.1016/j.amc.2014.11.073
Salim T.O. Some properties relating to the generalized Mittage–Leffler function. Adv Appl Math Anal. 2009; 4:21–30.
Luchko Y, Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math Vietnam. 1999; 24:207–233.
Gorenflo R, Kilbas A, Mainardi F, Rogosin S. Mittag-Leffler Functions, Related Topics and Applications. 2nd edition: Springer-Verlag GmbH Germany, 2020. DOI: https://doi.org/10.1007/978-3-662-61550-8
Srivastava H.M., Daoust Martha C. On Eulerian integrals associated with Kampe de Feriet’s function. Publications de L’institut Mathematique, Nouvelle serie, 1969, T. 9 (23), 199-202.
Maged G. Bin-Saad, Anvar Hasanov and Michael Ruzhansky (2021), Some properties relating to the Mittag–Leffler function of two variables. Integral Transforms and Special Functions. 2022, 33(5), pp. 400–418. DOI: https://doi.org/10.1080/10652469.2021.1939328