GEOMETRY IN SEMI-EUCLIDEAN SPACES

Authors

  • Artykbaev Abdullaaziz Tashkent State Transport University
  • Ismoilov Sherzodbek Tashkent State Transport University

DOI:

https://doi.org/10.52754/16948645_2023_1_29

Keywords:

An isotropic space, Gallеan space, isotropic sphere, first and second fundamental form, An isotropic space, Gallеan space, isotropic sphere, first and second fundamental form

Abstract

The geometry of semi-Euclidean spaces is an intensively developed part of non-Euclidean geometry. The paper presents the main results obtained over the past thirty years on the geometry of three-dimensional semi-Euclidean spaces. Three-dimensional semi-Euclidean spaces are isotropic and Galilean spaces. At the end of the paper, several unsolved problems in the Galilean and isotropic space are presented.

References

Artykbaev A. The dual surfaces of an isotropic space [Text] / A. Artykbaev, Sh. Ismoilov. – Bull. Inst. Math., 2021, Vol-4, Issue-4, pp. 1-8.

Артыкбаев А. Геометрия в целом в пространстве время[Teкст] / А. Артыкбаев, Д.Д. Соколов. – Ташкент, Фан, 1991, 120-127 c.

Artykbaev A. Special mean and total curvature of a dual surface in isotropic spaces[Text] / A. Artykbaev, Sh. Ismoilov. – International electronic journal of geometry, 2022, volume 15, Issue 1, pp. 1–10. DOI: https://doi.org/10.36890/iejg.972370

Artykbaev A. Surface recovering by a give total and mean curvature in isotropic space [Text] / A. Artykbaev, Sh.Ismoilov. – Palestine Journal of Mathematics, 2022, vol-11(3), pp. 351-361.

Aydin M.E.Affine factorable surfaces in isotropic spaces[Text] / M.E. Aydin, A.E Kara, V. Ergüt. – TWMS J. Pure Appl. Math., 2020, Vol-11, N-1, pp.72-88.

Aydin M. E. Translation hypersurfaces with constant curvature in 4-dimensional isotropic space[Text] / M. E. Aydin, A.O. Ogrenmis. – International Journal of Maps in Mathematics, 2019, Vol-2, Issue 1, pp. 108-130.

Розенфельд Б. А. Неевклидовы геометрии[Teкст]/ Б. А. Розенфельд, Москва Наука, 1969, 547 с.

Sachs H. Isotrop Geometri des Raumes[Text] / H.Sachs. – 1990 -300 c. DOI: https://doi.org/10.1007/978-3-322-83785-1

Lone M.S. Dual translation surfaces in the three dimensional simply isotropic space [Text] / M.S. Lone, M.K. Karacan. – Tamkang journal of mathematics, 2018, Volume 49, Number 1, 67-77. DOI: https://doi.org/10.5556/j.tkjm.49.2018.2476

Karacan M. K., Yoon D. W. and Bukcu B., Translation surfaces in the three-dimensional simply isotropic space [Text] / M. K. Karacan, D. W. Yoon, B. Bukcu – Int. J. Geom. Methods Mod. Phys., 2016, Vol-13(7). DOI: https://doi.org/10.1142/S0219887816500882

Strubecker K. Differential geometrie des isotropen Raumes I,II III [Text] / K. Strubecker, – Math.Z. 1942, vol-47, 743-777; 1942, vol-48 369-427; 1943, vol-48 369-427. DOI: https://doi.org/10.1007/BF01180022

Ismoilov Sh.Sh. Geometry of the Monge - Ampere equation in an isotropic space [Text] / Sh.Sh. Ismoilov, – Uzbek Mathematical Journal, 2022, vol-66, issue-2, pp. 66-77. DOI: https://doi.org/10.29229/uzmj.2022-2-7

Ismoilov Sh.Sh. Cyclic surfaces in pseudo-euclidean space[Text] / Sh.Sh. Ismoilov, B.M. Sultanov., – India, International Journal of Statistics and Applied Mathematics. 2020. Volume 5, №1, pp. 28-31.

Султанов Б.М. Существование циклической поверхности по заданной функции полной кривизны[Teкст] /Б.М. Султанов, – Вестник НУУ. 2017, №22, стр. 201- 204.

Исмоилов Ш.Ш. Свойства двойственной поверхности в многомерном изотропном пространстве[Teкст]/ Ш.Ш. Исмоилов,–– Tashkent, Physical and mathematical sciences, 2022. Volume 3. Issue 1. – P. 47-58

Published

2023-06-30

How to Cite

Artykbaev, A., & Ismoilov , S. (2023). GEOMETRY IN SEMI-EUCLIDEAN SPACES. Journal of Osh State University. Mathematics. Physics. Technical Sciences, (1(2), 29–36. https://doi.org/10.52754/16948645_2023_1_29