MODELING FILTRATION AND SOLUTE TRANSPORT IN A CYLINDRICAL TWO-ZONE MEDIUM WITH ALLOWANCE FOR THE INHOMOGENEITY OF THE FIELD OF FILTRATION RATES
MODELING FILTRATION AND SOLUTE TRANSPORT IN A CYLINDRICAL TWO-ZONE MEDIUM WITH ALLOWANCE FOR THE INHOMOGENEITY OF THE FIELD OF FILTRATION RATES
DOI:
https://doi.org/10.52754/16948645_2023_2_124Keywords:
porous medium, substances, inhomogeneous liquid, macropore, pressure fields, velocity fields, filtration, microporeAbstract
In the paper deals with the problem of transport and filtration in a two-zone cylindrical porous medium with an inhomogeneous velocity field. On the basis of the equation of piezoconductivity analyzed by various parameters of the permeability coefficients of the pressure level line, the filtration rate and the line of the level of relative concentration. The influence of changes in the permeability and diffusion coefficients on the solute and filtration of the fluid was studied.
References
Bear J., Dynamics of fluids in porous media, 1972, NY: Elsevier.
Хужаёров Б.Х. Фильтрация неоднородных жидкостей в пористых средах. Издательство «ФАН». Ташкент 2012. - 280 с.
Хужаёров Б.Х., Махмудов Ж.М. Математические модели фильтрации неоднородных жидкостей в пористых средах. Издательство «ФАН». Ташкент 2014.- 280 с.
Clark M. M. Transport Modelling for Environmental Engineers and Scientists, John Wiley, New York, 1996.
Van Genuchten M.Th., Tang D.H., Guennelon R., Some exact solutions for solute transport through soils containing large cylindrical macropores // Water Recourses Research. 1984. Vol. 20, № 3. Pp. 335-346. DOI: https://doi.org/10.1029/WR020i003p00335
Haws N. W., M. R. Paraskewich Jr., M. Hilpert, W. P. Ball, Effect of fluid velocity on model-estimated rates of radial solute diffusion in a cylindrical macropore column, Water Resour. Res., Amer. J. 2007. 43, W10409 DOI: https://doi.org/10.1029/2006WR005751
M. M.Rahman, R. Liedl, P. Grathwohl, Sorption kinetics during macropore transport of organic contaminants in soils: Laboratory experiments and analytical modeling, Water Resour. Res., 40, Amer. J. 2004. W01503 DOI: https://doi.org/10.1029/2002WR001946
Coats K.H., Smith B.D., Dead-end volume and dispersion in porous media, Society of Petroleum Engineering Journal, 1964, 4(1), 73-84. DOI: https://doi.org/10.2118/647-PA
Gaudet J.P., Jégat H., Vachaud G., Wierenga P.J., Solute transfer, with exchange between mobile and stagnant water, through unsaturated sand, Soil Sci. Soc. Amer. J., 1977, 41(4), 665-671. DOI: https://doi.org/10.2136/sssaj1977.03615995004100040009x
Alexcander A.Samarskii, 2001, The teory of difference schemes, //Pure and applied mathemathics//, Marcel Dekker Inc, New York. 2001. 788 p. DOI: https://doi.org/10.1201/9780203908518
Barenblatt G.I., Entov V.M., Ryzhik V.M. Theory of Fluid Flows Through Natural Rocks. Kluwer Academic Publisher, 1990. – 395 pp. DOI: https://doi.org/10.1007/978-94-015-7899-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Вестник Ошского государственного университета. Математика. Физика. Техника
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.