ON AN INVERSE PROBLEM OF THE BITSADZE-SAMARSKY TYPE FOR PARABOLIC EQUATION OF FRACTIONAL ORDER
DOI:
https://doi.org/10.52754/16948645_2023_1_90Keywords:
inverse problem, Gerasimov-Caputo operator, equation of fractional order, Riesz basis, adjoint problem.Abstract
In this paper, we study a nonlocal inverse problem of the Bitsadze-Samarskii type for a degenerate parabolic equation of fractional order with the Gerasimov-Caputo operator. The spectral method is used to solve the problem. Using this method, the problem under consideration is reduced to the study of a spectral boundary value problem for a second-order ordinary differential equation with respect to a spatial variable. The spectral questions of the obtained problem, as well as of the adjoint problem, are investigated, and the differential operator corresponding to the adjoint problem is being discontinuous. Eigenvalues and eigenfunctions of the problems are found, completeness and the Riesz basis property of the obtaining systems are proved. Further, under certain conditions on the given functions, uniqueness and existence theorems for a solution to the posed problem are proved. When proving the uniqueness of the solution to the problem, we use the completeness of the system of eigenfunctions of the corresponding spectral problem, and construct the solution of the problem in the form of an absolutely and uniformly descending series.
References
T. Carleman. Sur la theorie des equations integrales et ses applications. / Verhandlungen des Internat. // Math. Kongr., Zurich. 1932. №1. P.138–151.
M.I. Vyshik. On strongly elliptic system of differential equations. // Mat.sb. 1951. № 29. P.615–676.
F. Browder. Non-local elliptic boundary value problems. // Amer. J. Math.. 1964. №86. P.735–750. DOI: https://doi.org/10.2307/2373156
Бицадзе А.В. О некоторых простейших обобщениях линейных эллиптических краевых задач. / А.В. Бицадзе, А.А. Самарский. //Докл. АН СССР. / -1969. -Т. 185. № 4. -С. 739–740.
Скубачевский А.Л. Неклассические краевые задачи /А.Л. Скубачевский // Современная Математика Фундаментальные Направления / -2007. -Т. 26. -С. 3–132.
H.Al.Shamsi, B.J.Kadirkulov, S.Kerbal. The Bitsadze–Samarskii type problem for mixed type equation in the domain with the deviation from the characteristics. // Lobachevskii journal of mathematics. 2020. Vol. 41. P.1021–1030. DOI: https://doi.org/10.1134/S1995080220060025
K.U. Khubiev. The Bitsadze–Samarskii problem for some characteristically loaded hyperbolic-parabolic equation. // Journal of Samara State Technical University. Ser. physical and mathematical sciences. 2019. Vol.23. No.4. P.789-796.
Kilbas A.A. Theory and applications of fractional differential equations. /A.A. Kilbas, H.M. Srivastava, J.J. Trujillo // Elsevier. – Amsterdam: 2006. -523 p.
Ерошенков Е.П. О полноте систем корневых функций двух задач Бицадзе-Самарского. /Е.П.Ерошенков, Б.К.Кокебаев. // В кн.: Тезисы докладов VIII респ. науч. конф. по матем. и мех., часть 1/ Алма-ата: 1984. -C. 131.
Ильин В.А. Необходимые и достаточные условия базисности Рисса корневых векторов разрывных операторов второго порядка // Дифференц. Уравнения. 1986, том 22, № 12, С. 2059–2071.
Бари К. Биортогональные системы и базисы в гильбертовом пространстве. //Уч. зап. MГУ / -Москва. -Т. 148. Вып. 4. -1951. -С. 69-107.
Будаев В.Д. Ортогональные и биортогональные базисы. //Известия РГПУ им. А.И. Герцена. -2005. -Т. 5, № 13. -С. 7-38.
L. Boudabsa, T. Simon. Some Properties of the Kilbas-Saigo Function. // Mathematics. 2021. 9 (217). P.1-24. DOI: https://doi.org/10.3390/math9030217
Ильин В.А. Основы математического анализа. Часть 2: учебник /В.А. Ильин, Э.Г. Позняк. – Москва: Наука, 1998. -448 с.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.