CONSTRUCTION OF THE ASYMPTOTICS OF A SINGULARLY PERTURBED FIRST-ORDER DIFFERENTIAL EQUATION WITH A SINGULAR POINT
DOI:
https://doi.org/10.52754/16948645_2022_1_1Keywords:
singularly perturbed, weakly indignant, turning pointAbstract
The subject of the article is a singularly perturbed homogeneous weakly linear differential equation. The purpose of the article is to find the asymptotics solving a singularly perturbed homogeneous weakly linear differential equation. To construct asymptotic, a classic asymptotic method was used - the perturbation method. Based on this method, the approximate solutions of both linear and nonlinear differential equations, and equations in private derivatives can be relatively easily. The article discusses the equation of the form where , with the value of ε, the differential equation goes into a weakly linear ordinary equation. If the equation depends on the small parameter analytically, the solution will be presented through analytical functions. In other words, decomposes into a series of Taylor with a residual member. In the development of the classical perturbation theory, Henri Poincare, who gave an initial definition was made to the development of the classical perturbation theory. The construction of asymptotics of a singularly perturbed equation is applied, in such branches of science as: physics, technique, fluid flow and gas.
References
Alymkulov, K. A boundary function method for solving the model lighthill equation with a regular singular point [Text] / K. Alymkulov, A.A. Khalmatov // Mathematical Notes. - Moscow, 2012. - № 6. - Pр. 117-121.
Alymkulov, K. About new statement and about new method of Cauchy problem for singular perturbed differential equation of the type of Lighthill [Text] / K. Alymkulov, K.B. Matanova, A.A. Khalmatov // International Journal of Scientific and Innovative Mathematical Research (IJSIMR) - 2015. - Volume 3. - Pр. 54-64.
Tursunov, D. A. Asymptotics of the Solution to the Boundary-Value Problems with Non Smooth Coefficient / D. A. Tursunov, M. O. Orozov, A. A. Halmatov // Lobachevskii Journal of Mathematics. – 2020. – Vol. 41, No. 6. – P. 1115-1122. – DOI 10.1134/S1995080220060177. – EDN AZKBTQ.
Halmatov, A. A. Construction of the asymptotics of the solution of a singularly perturbed nonlinear equation with a singular point / A. A. Halmatov, A. A. Baltabaeva, K. G Kanybek // Science. Education. Engineering. – 2021. – No. 3(72). – P. 34-40. – DOI 10.54834/16945220_2021_3_34. – EDN LWIYNU.
Halmatov, A. A. Construction of the asymptotic of the solution of a singularly perturbed partial differential equation with a special Lin / A. A. Halmatov, N. Nishanbaeva, K. A Absatar // Science. Education. Engineering. – 2021. – No. 3(72). – P. 29-33. – DOI 10.54834/16945220_2021_3_29. – EDN UHGWZY.
Khalmatov, A. A. Analysis of finding a solution to modular equations when the equation contains two or more modules / A. A. Khalmatov, G. A. Dadazhanova, K. A. Abbazova, N. Sayfiddin K // Science. Education. Engineering. – 2022. – No. 3(75). – P. 49-57. – DOI 10.54834/16945220_2022_3_49. – EDN JQQTXH.
Khalmatov, A. A. Spice of solutions to singularly perturbed equations / A. A. Khalmatov, K. A. Abbazova, G. Kanybek K, A. Baltabaev // Science. Education. Engineering. – 2022. – No. 3(75). – P. 57-63. – DOI 10.54834/16945220_2022_3_57. – EDN QCRAZR.
Бабаев, Д. Б. Санариптештирүү шартында техникалык жождордогу жалпы физика курсунун орду / Д. Б. Бабаев, Ш. К. Хаитов, А. А. Халматов // Alatoo Academic Studies. – 2020. – No. 3. – P. 84-89. – DOI 10.17015/aas.2020.203.09. – EDN TEHYXP.
Downloads
Published
Versions
- 2023-03-01 (3)
- 2022-12-20 (2)
- 2022-12-20 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Osh State University. Mathematics. Physics. Technical Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.