AN ANALOG OF THE TRICOMI PROBLEM FOR A MIXED TYPE EQUATION WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
DOI:
https://doi.org/10.52754/16948645_2024_1(4)_31Keywords:
parabolic-hyperbolic type equation, mixed domain, Tricomi problem, Cauchy problem, first boundary value problemAbstract
In this article, the Tricomi problem for a parabolic-hyperbolic type equation in a mixed domain is investigated. Riemann-Liouville fractional derivative participates in the parabolic part of the considerated equation, and the hyperbolic part consists of a degenerate hyperbolic equation of the second kind. The solution of the problem in the hyperbolic sub-domain is found as a solution to the Cauchy problem, and in a parabolic sub-domain as a solution to the first boundary value problem. For proving the existence of the solution of the problem, the theory of second kind Volterra integral equations is used.
References
Мамадалиев, Нуманжон К. "О представлении решения видоизмененной задачи Коши." Сибирский математический журнал 41, no. 5 (2000): 1087-1097.
Мамадалиев, Назиржон Камилжонович. "Об одном подходе к решению задачи Трикоми для уравнения параболо-гиперболического типа." Доклады Адыгской (Черкесской) Международной академии наук 9.1 (2007): 66-68.
Urinov AK, Okboev AB. Nonlocal boundary-value problem for a parabolic-hyperbolic equation of the second kind. Lobachevskii Journal of Mathematics. 2020 Sep;41(9):1886-97. DOI: https://doi.org/10.1134/S1995080220090280
Окбоев А.Б. Задача Трикоми для уравнения параболо-гиперболического типа // Бюллетень Института математики. –Ташкент. 2020. №1. –С. 95 – 103
Салахитдинов М.С., Уринов А.К. Краевые задачи для уравнений смешанного типа со спектральным параметром. –Ташкент: Фан, 1997. 168 с.
S. Kh. Gekkieva, A boundary value problem for the generalized trans- fer equation with a fractional derivative in a semi-infinite domain. Izv. Kabardino-Balkarsk. Nauchnogo Tsentra RAN 1 (8) (2002), 6-8.
Berdyshev, A. S., A. Cabada, and E. T. Karimov. "On a non-local boundary problem for parabolic-hyperbolic equation involving Riemann-Liouville fractional differential operator."
Джураев Т. Д., Сопуев А., Мамажонов М. Краевые задачи для уравнений параболо-гиперболического типа. –Ташкент: Фан, 1986. – 220 с.
Михлин С.Г. Лекции по линейным интегральным уравнениям. – Москва: Физматгиз, 1959. – 232 с.
Mamchuev, M.O. Solutions of the Main Boundary Value Problems for a Loaded Second-Order Parabolic Equation with Constant Coefficients, Differ. Uravn., 2016, vol. 52, no. 6, pp. 789–797. DOI: https://doi.org/10.1134/S0012266116060094
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.