SPECTRAL PROPERTIES OF A ONE-PARTICLE SCHRÖDINGER OPERATOR WITH CONTACT POTENTIAL
DOI:
https://doi.org/10.52754/16948645_2024_1(4)_25Keywords:
hamiltonian, eigenvalues, eigenfuncion, unitary equivalence operatorsAbstract
The Schrödinger operator associated to a system of one particle in an external force field (with a contact potential) on a one-dimensional lattice is considered. The eigenvalue and the associated eigenfunction of this operator are found.
References
Mogilner A.I. Hamiltonians of solid state physics at few-particle discrete Schrodinger operators: problems and results // Advances in Sov. Math. 1991. V. 5. P. 139–194. DOI: https://doi.org/10.1090/advsov/005/05
A.I. Mоgilner. The problem of few quasi-particles in solid state physics // In "Applications self-adjoint extensions in quantum physics"(eds. P. Exner, P. Seba ), Lecture Notes in Phys. Vol.324. Springer-Vilag, Berlin. 1988. 52-83.
Mattis D.C. The few-body problem on a lattice // Rev. Mod. Phys. 1986. V. 58, No. 2. P. 361–379. DOI: https://doi.org/10.1103/RevModPhys.58.361
Malishev V.A., Minlos R.A. Linear infinite-particle operators / trl. by A. Mason. Providence,RI: American Mathematical Society, 1995. VIII, 298 р. (Translations of Mathematical Monographs; v.143). Математика/Mathematics 36. DOI: https://doi.org/10.1090/mmono/143
Minlos R.A., Mogilner A.I. Some problems concerning spectra of lattice models // Schrödinger Operators, Standard and Nonstandard: Proc. Conf. in Dubna, USSR, 6–10 September 1989/P. Exner, P. Seba (eds.). Singapore: World Scientific, 1989. P. 243–257.
S.Albeverio, S.N.Lakaev and Z.I.Muminov, On the structure of the essential spectrum for the three-particle Schroedinger operators on lattices, Math. Nachr.No 7, 1-18 pp. 2007. DOI: https://doi.org/10.1002/mana.200410509
Р.Беллман, Введение в теорию матриц, Изд. "Наука". Москва, 376 ст. 1976.
Faria da Veiga P.A., Ioriatti L. and O‘.Carroll, Energy-momentum spectrum of some two-particle lattice Schroedinger Hamiltonians. Phys. Rev. E, 3 - 9 pp. 2002. DOI: https://doi.org/10.1103/PhysRevE.66.016130
Reed M. and Simon B.: Methods of modern mathematical physics. IV: Analysis of Operators. Academic Press, New York. 458 pp.1979.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.