SPECTRAL PROPERTIES OF A ONE-PARTICLE SCHRÖDINGER OPERATOR WITH CONTACT POTENTIAL

Authors

  • Utkir Kuljanov Samarkand State University named after Sharof
  • Golibjon Ismoilov Samarkand Branch of Tashkent State University of Economics

DOI:

https://doi.org/10.52754/16948645_2024_1(4)_25

Keywords:

hamiltonian, eigenvalues, eigenfuncion, unitary equivalence operators

Abstract

The Schrödinger operator associated to a system of one particle in an external force field (with a contact potential) on a one-dimensional lattice is considered. The eigenvalue and the associated eigenfunction of this operator are found.

References

Mogilner A.I. Hamiltonians of solid state physics at few-particle discrete Schrodinger operators: problems and results // Advances in Sov. Math. 1991. V. 5. P. 139–194. DOI: https://doi.org/10.1090/advsov/005/05

A.I. Mоgilner. The problem of few quasi-particles in solid state physics // In "Applications self-adjoint extensions in quantum physics"(eds. P. Exner, P. Seba ), Lecture Notes in Phys. Vol.324. Springer-Vilag, Berlin. 1988. 52-83.

Mattis D.C. The few-body problem on a lattice // Rev. Mod. Phys. 1986. V. 58, No. 2. P. 361–379. DOI: https://doi.org/10.1103/RevModPhys.58.361

Malishev V.A., Minlos R.A. Linear infinite-particle operators / trl. by A. Mason. Providence,RI: American Mathematical Society, 1995. VIII, 298 р. (Translations of Mathematical Monographs; v.143). Математика/Mathematics 36. DOI: https://doi.org/10.1090/mmono/143

Minlos R.A., Mogilner A.I. Some problems concerning spectra of lattice models // Schrödinger Operators, Standard and Nonstandard: Proc. Conf. in Dubna, USSR, 6–10 September 1989/P. Exner, P. Seba (eds.). Singapore: World Scientific, 1989. P. 243–257.

S.Albeverio, S.N.Lakaev and Z.I.Muminov, On the structure of the essential spectrum for the three-particle Schroedinger operators on lattices, Math. Nachr.No 7, 1-18 pp. 2007. DOI: https://doi.org/10.1002/mana.200410509

Р.Беллман, Введение в теорию матриц, Изд. "Наука". Москва, 376 ст. 1976.

Faria da Veiga P.A., Ioriatti L. and O‘.Carroll, Energy-momentum spectrum of some two-particle lattice Schroedinger Hamiltonians. Phys. Rev. E, 3 - 9 pp. 2002. DOI: https://doi.org/10.1103/PhysRevE.66.016130

Reed M. and Simon B.: Methods of modern mathematical physics. IV: Analysis of Operators. Academic Press, New York. 458 pp.1979.

Published

2024-06-11

How to Cite

Kuljanov, U., & Ismoilov, G. (2024). SPECTRAL PROPERTIES OF A ONE-PARTICLE SCHRÖDINGER OPERATOR WITH CONTACT POTENTIAL. Journal of Osh State University. Mathematics. Physics. Technical Sciences, (1(4), 127–130. https://doi.org/10.52754/16948645_2024_1(4)_25