ON ONE CONJUGATION PROBLEM FOR A FOURTH-ORDER COMPOSITE AND HYPERBOLIC TYPE EQUATION
DOI:
https://doi.org/10.52754/16948645_2024_1(4)_11Keywords:
Conjugation problem, boundary conditions, composite type, Goursat problem, Green and Riemann function, Dirichlet problemAbstract
In the article a comprehensive study of the conjugation problem for the equation of the composite and hyperbolic types of the fourth order is carried out. When solving the conjugation problem, the methods of the theory of mixed type equations and the theory of Voltaire and Fredholm integral equations of the second kind will be used. The main problem is split into three independent problems, each of which is considered separately. In the course of solving problems, problems for second-order ordinary differential equations and problems of the Goursat type are studied. It should be noted that these ordinary differential equations arise on the line of type change and boundary conditions are found for them. The formulas for the solution of the main problem in the corresponding subdomains of the main domain are obtained. The one-valued solvability of the conjugation problem is proved.
References
Бекмаматов З.М. Задачи сопряжения для уравнений составного и гиперболического типов четвертого порядка/ Дис.канд.физ.-мат. наук, Ош, 2022. – 105 с.
A. Sopuev, S. Babaev, Z.M. Bekmamatov Revisiting the Mixed Problem for Equations of Compound and Hyperbolic Types of Order Four [Text] / Revisiting the mixed problem for equations of compound end hyperbolic types of order four // Growth poles of the global economy: emergence, changes and future perspectives. Lecture notes in networks and system. – 2020. – 73, V.1. – Р. 725-736. DOI: https://doi.org/10.1007/978-3-030-15160-7_73
Джураев Т.Д. Краевые задачи для уравнений смешанного и смешанно–составного типов. – Ташкент: Фан, 1979. – 240 с.
Бицадзе А.В. Уравнения смешанного типа. –М.: Изд-во АН СССР, 1959. – 164 с.
Сопуев А. Краевые задачи для уравнения четвертого порядка и уравнения смешанного типа / Дис.докт.физ.-мат. наук, Бишкек, 1996. – 235 с.
Полянин А.Д. Справочник по линейным уравнениям математической физики. – М.: Физматлит, 2001. – 576 с.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Osh State University. Mathematics. Physics. Technical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.