OPTIMAL NUMBER OF PURSUERS IN THE GAME ON THE 1-SKELETON OF TESSERACT

OPTIMAL NUMBER OF PURSUERS IN THE GAME ON THE 1-SKELETON OF TESSERACT

Authors

  • Ismailovich Tashkent State University of Economic
  • Eshkobilovich Tashkent State University of Economic

DOI:

https://doi.org/10.52754/16948645_2023_2_169

Keywords:

tesseract, differential game, pursuer, evader, strategy

Abstract

In the paper, we study pursuit and evasion differential games within a four-dimensional cube, where all the players move along the edges. The problem is to find the optimal number of pursuers in the game, to construct strategies for the pursuers in pursuit game, and evasion strategy in evasion game.

References

Isaacs, R.: Differential games. John Wiley & Sons, New York, NY, USA. (1965)

Pontryagin, L.S.: Selected works. Nauka, Moscow. (1988)

Krasovskii, N.N. and Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York. (1988) DOI: https://doi.org/10.1007/978-1-4612-3716-7

Azamov, A.A.: On Pontryagin’s second method in linear differential games of pursuit. Math. USSR-Sb., 46(3), 429–437 (1983) DOI: https://doi.org/10.1070/SM1983v046n03ABEH002944

Berkovitz, L.D.: Differential game of generalized pursuit and evasion. SIAM J. Contr. 24(3): 361–373 (1986) DOI: https://doi.org/10.1137/0324021

Elliot, R.J., Kalton, N.J.: The Existence of Value for Differential Games. American Mathematical Soc.: Providence, RI, USA. (1972) DOI: https://doi.org/10.1090/memo/0126

Fleming, W.H.: The convergence problem for differential games. J. Math. Anal. Appl. 3, 102–116 (1961) DOI: https://doi.org/10.1016/0022-247X(61)90009-9

Friedman, A.: Differential Games. John Wiley and Sons, New York (1971)

Hajek, O.: Pursuit Games. Math. Sci. Engrg.. Academic Press, New York (1975)

Pontryagin, L.S., Mishchenko, E.F.: The problem of evading the encounter in linear differential games, Differencial’nye Uravnenija, 7, 436–445 (1971)

Petrosyan, L.A.: Differential Games of Pursuit. World Scientific, Singapore, London (1993) DOI: https://doi.org/10.1142/1670

Satimov, N.Y., Rikhsiev, B.B.: Methods of Solving of Evasion Problems in Mathematical Control Theory. Fan, Tashkent, Uzbekistan (2000)

Grigorenko, N.L.: Mathematical methods of control of several dynamic processes. Moscow: MSU Press (1990) (in Russian).

Ibragimov, G.I.: A game of optimal pursuit of one object by several. J. Appl. Maths Mechs, 62(2), 187–192 (1998) DOI: https://doi.org/10.1016/S0021-8928(98)00024-0

Blagodatskikh, A.I., Petrov, N.N.: Simultaneous Multiple Capture of Rigidly CoordinatedEvaders. Dynamic Games and Applications 9, 594–613, (2019). doi:10.1007/s13235-019-00300-8 DOI: https://doi.org/10.1007/s13235-019-00300-8

Azamov, A.A., Kuchkarov, A.Sh. Holboyev, A.G.: The pursuit-evasion game on the 1-skeleton graph of the regular polyhedron. III. Mat. Teor. Igr Pril., 11(4), 5–23 (2019) DOI: https://doi.org/10.1134/S0005117919010144

Scott, W.L., Leonard, N.E.: Optimal evasive strategies for multiple interacting agents with motion constraints. Automatica J. IFAC, 94, 26–34 (2018) DOI: https://doi.org/10.1016/j.automatica.2018.04.008

Yan, R., Shi, Z., Zhong, Y.: Cooperative strategies for two-evader-one-pursuer reach-avoid differential games. International Journal of Systems Science. 52(9), 1894–1912, (2021). doi:10.1080/00207721.2021.1872116. DOI: https://doi.org/10.1080/00207721.2021.1872116

Alias I.A., Ibragimov G.I., Rakhmanov A.T.: Evasion Differential Game of Infinitely Many Evaders from Infinitely Many Pursuers in Hilbert Space. Dynamic Games and Applications. 6(2): 1–13 (2016). doi:10.1007/s13235-016-0196-0, DOI: https://doi.org/10.1007/s13235-016-0196-0

Ibragimov, G.I., Ferrara, M., Ruziboev M., Pansera B.A.: Linear evasion differential game of one evader and several pursuers with integral constraints. International Journal of Game Theory. 50, 729–750.(2021). doi:10.1007/s00182-021-00760-6 DOI: https://doi.org/10.1007/s00182-021-00760-6

Ibragimov, G.I., Salleh, Y.: Simple motion evasion differential game of many pursuers and one evader with integral constraints on control functions of players. Journal of Applied Mathematics, Article ID 748096, (2012). doi:10.1155/2012/748096 DOI: https://doi.org/10.1155/2012/748096

Kumkov, S.S., Le Ménec, S., Patsko, V.P.: Zero-sum pursuit-evasion differential games with many objects: Survey of publications. Dynamic games and applications. 7, 609–633, (2017). doi:10.1007/s13235-016-0209-z DOI: https://doi.org/10.1007/s13235-016-0209-z

Belousov A. A.: O lineinykh differentsialnykh igrakh presledovaniya s integralnymi ogranicheniyami. In-t matematiki im. V. A. Steklova RAN, MGU im. M. V. Lomonosova, M., 321–322 (2008)

Chikrii, A. A., Belousov, A. A.: On linear differential games with convex integral constraints. Trudy Inst. Mat. i Mekh. UrO RAN, 19(4), 308–319 (2013)

Ibragimov, G.I., Ferrara, M., Kuchkarov, A.Sh., and Pansera, B.A.: Simple motion evasion differential game of many pursuers and evaders with integral constraints. Dynamic Games and Applications. 8, 352–378 (2018). doi:10.1007/s13235-017-0226-6 DOI: https://doi.org/10.1007/s13235-017-0226-6

Satimov, N.Yu., Ibragimov, G.I.: One class of simultaneous pursuit games, Izv. Vyssh. Uchebn. Zaved. Mat. 5, 46–-55 (2012) DOI: https://doi.org/10.3103/S1066369X12050052

Ibragimov, G.I., Salimi, M., Amini, M.: Evasion from many pursuers in simple motion differential game with integral constraints, European Journal of Operational Research 218(2), 505–511 (2012) DOI: https://doi.org/10.1016/j.ejor.2011.11.026

Ibragimov, G., Alias, I.A., Tukhtasinov, M, Hasim, R.M.: A pursuit problem described by infinite system of differential equations with coordinate-wise integral constraints on control functions, Malaysian Journal of Mathematical Sciences, 9(1), 67–76, (2015)

Ferrara, M., Ibragimov, G.I., Salimi, M.: Pursuit-evasion game of many players with coordinate-wise integral constraints on a convex set in the plane. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 95(2), 1–6, (2017)

Alias, I.A., Jaman, K., Ibragimov, G.: Pursuit differential game of many pursuers and one evader in a convex hyperspace, Mathematical Modeling and Computing, 9(1), 9–17 (2022) DOI: https://doi.org/10.23939/mmc2022.01.009

Azamov, A.A.: Lower bound for the advantage coefficient in the graph search problem. Differential equations, 44(12) 1764–1767 (2008) DOI: https://doi.org/10.1134/S0012266108120136

Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching, Theoret. Comput. Sci., 399, 236–245 (2008) DOI: https://doi.org/10.1016/j.tcs.2008.02.040

Ibragimov, G.I., Luckraz, Sh.: On a Characterization of Evasion Strategies for Pursuit-Evasion Games on Graphs. Journal of Optimization Theory and Applications. 175, 590–596, (2017). doi:10.1007/s10957-017-1155-7 DOI: https://doi.org/10.1007/s10957-017-1155-7

Bonato, A., Golovach, P., Hahn, G., Kratochvil, J.: The capture time of a graph. Discrete Mathematics, 309(18), 5588–5595 (2009) DOI: https://doi.org/10.1016/j.disc.2008.04.004

Azamov, A., Ibaydullaev, T.: A pursuit-evasion differential game with slow pursuers on the edge graph of simplexes I. Mathematical Game Theory and Applications. 12(4), 7–23 (2020). doi:10.17076/mgta_2020_4_23 DOI: https://doi.org/10.17076/mgta_2020_4_23

Andreae, T.; Hartenstein, F.; Wolter, A.: A two-person game on graphs where each player tries to encircle his opponent’s men. Theoret. Comput. Sci. (Math Games), 215, 305–323 (1999) DOI: https://doi.org/10.1016/S0304-3975(98)00203-5

Azamov, A.A., Kuchkarov, A.Sh., Holboyev, A.G.: The pursuit-evasion game on the 1-skeleton graph of the regular polyhedron. II. Mat. Teor. Igr Pril. 8(4), 3–13 (2016) DOI: https://doi.org/10.1134/S0005117917040166

Azamov, A.A., Kuchkarov, A.Sh., Holboyev, A.G.: The pursuit-evasion game on the 1-skeleton graph of the regular polyhedron. I. Mat. Teor. Igr Pril., 7(3), 3–15 (2015)

Azamov, A.A., Ibaydullaev, T., Ibragimov, G.I., Alias, I.A.: Optimal number of pursuers in the differential games on the 1-skeleton of orthoplex. Symmetry (Game Theoretical Symmetry Dynamic Processes), 13(11), 2170 (2021). doi:10.3390/sym13112170 DOI: https://doi.org/10.3390/sym13112170

Downloads

Published

2023-12-30

How to Cite

Ibragimov , G., & Muminov, Z. (2023). OPTIMAL NUMBER OF PURSUERS IN THE GAME ON THE 1-SKELETON OF TESSERACT: OPTIMAL NUMBER OF PURSUERS IN THE GAME ON THE 1-SKELETON OF TESSERACT. Journal of Osh State University. Mathematics. Physics. Technical Sciences, (2(3), 169–180. https://doi.org/10.52754/16948645_2023_2_169