EXPANSION FORMULAS FOR DOUBLE HYPERGEOMETRIC FUNCTIONS AND ITS APPLICATION TO THE THEORY OF SINGULAR ELLIPTIC EQUATIONS
EXPANSION FORMULAS FOR DOUBLE HYPERGEOMETRIC FUNCTIONS AND ITS APPLICATION TO THE THEORY OF SINGULAR ELLIPTIC EQUATIONS
DOI:
https://doi.org/10.52754/16948645_2023_2_149Keywords:
double hypergeometric functions, Horn list, confluent hypergeometric function, expansion formula, symbolic operators of Burchnall-Chaundy typeAbstract
It is known that the Gaussian hypergeometric function of one variable has been thoroughly investigated in all respects. Therefore, when studying the properties of hypergeometric functions of many variables, expansion formulas are very important, which make it possible to represent a function of many variables in the form of an infinite sum of products of several hypergeometric Gauss functions, and this, in turn, facilitates the process of studying the properties of functions of many variables. In the literature, 34 hypergeometric functions of two variables of order 2 (Horn List) are known, and for 11 of them in 1940-1941. Burchnall and Chaundy obtained more than 15 pairs of expansions using the symbolic method. The well-known Poole formula played an important role in the studies of Burchnall and Chaundy, but this one formula was not enough for the expansion of all functions from the Horn list. Therefore, until recently, other Horn hypergeometric functions of two variables remained undecomposed. In this paper, new symbolic operators of Burchnall-Chaundy type are introduced, their properties are studied, and an expansion for 5 Horn hypergeometric functions is established. An application of the new expansion formula to the theory of constructing fundamental solutions for singular elliptic equations is shown.
References
Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Том 1. /Г.Бейтмен, А.Эрдейи. – М.: Наука, 1973. 296 с.
Horn J. Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen // Math.Ann. 1889. No.34. P. 544 – 600. DOI: https://doi.org/10.1007/BF01443681
Burchnall J.L., Chaundy T.W. Expansions of Appell’s double hypergeometric functions // The Quarterly Journal of Mathematics (Oxford). 1940. Ser.11. P. 249–270. DOI: https://doi.org/10.1093/qmath/os-11.1.249
Burchnall J.L., Chaundy T.W. Expansions of Appell’s double hypergeometric functions(II) // The Quarterly J. of Mathematics, Oxford. 1941. Ser.12. P. 112 - 128. DOI: https://doi.org/10.1093/qmath/os-12.1.112
Эргашев Т.Г., Комилова Н.Д. Задача Хольмгрена для многомерного эллиптического уравнения с двумя сингулярными коэффициентами // Вестник Томского государственного университета. Математика и механика. 2020. №63. C. 47–59. DOI: 10.17223/19988621/63/5. DOI: https://doi.org/10.17223/19988621/63/5
Srivastava H.M., Hasanov A., Choi J. Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation // Sohag J.Math. 2015. V.2(1). P.1–10.
Berdyshev A.S, Hasanov A., Ergashev T.G. Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation.II // Complex Variables and Elliptic Equations. 2020. V. 65(2). P.316–332. DOI: https://doi.org/10.1080/17476933.2019.1583219
Эргашев Т.Г. Третий потенциал двойного слоя для обобщенного двуосесимметричес-кого уравнения Гельмгольца // Уфимский математический журнал. 2018. Т. 10. Вып. 4. С.111–122. DOI: https://doi.org/10.13108/2018-10-4-111
Эргашев Т.Г. Четвертый потенциал двойного слоя для обобщенного двуосе-симметрического уравнения Гельмгольца // Вестник Томского государственного университета. Математика и механика. 2017. №50. С.45–56. DOI: https://doi.org/10.17223/19988621/50/4
Karimov E.T., Nieto J.J. The Dirichlet problem for a 3D elliptic equation with two singular coefficients // Computers and Mathematics with Applications. 2011. 62. P. 214–224. DOI: 10.1016/j.camwa.2011.04.068. DOI: https://doi.org/10.1016/j.camwa.2011.04.068
Poole E. G. Introduction to the Theory of Linear Differential Equations./E.G.Poole. – Oxford, Clarendon (Oxford University) Press, 1936.
Эргашев Т.Г., Сафарбаева Н.М.. Задача Хольмгрена для многомерного уравнения Гельмгольца с одним сингулярным коэффициентом // Вестник Томского государственного университета. Математика и механика. 2019. 62. C. 55–67. DOI: https://doi.org/10.17223/19988621/62/5
Mavlyaviev R.M., Garipov I.B. Fundamental solution of multidimensional axisymmetric Helmholtz equation // Complex variables and elliptic equations. 2016. No.62. P.287–296. DOI: https://doi.org/10.1080/17476933.2016.1218853
Смирнов М.М. Вырождающиеся эллиптические и гиперболические уравнения: /М.М.Смирнов. – М.: Наука, 1966. 292 с.
Киприянов И.А., Кононенко В.И. Фундаментальные уравнения В-эллиптических уравнений. Дифференциальные уравнения. 1967, Т.3, №1. С.114 –129.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Вестник Ошского государственного университета. Математика. Физика. Техника
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.