EXPANSION FORMULAS FOR DOUBLE HYPERGEOMETRIC FUNCTIONS AND ITS APPLICATION TO THE THEORY OF SINGULAR ELLIPTIC EQUATIONS

EXPANSION FORMULAS FOR DOUBLE HYPERGEOMETRIC FUNCTIONS AND ITS APPLICATION TO THE THEORY OF SINGULAR ELLIPTIC EQUATIONS

Authors

  • Gulamjanovich National Research University “TIIAME”
  • Odilovich Fergana Polytechnic Institute
  • Ahunjanovich Al-Fraganus University

DOI:

https://doi.org/10.52754/16948645_2023_2_149

Keywords:

double hypergeometric functions, Horn list, confluent hypergeometric function, expansion formula, symbolic operators of Burchnall-Chaundy type

Abstract

It is known that the Gaussian hypergeometric function of one variable has been thoroughly investigated in all respects. Therefore, when studying the properties of hypergeometric functions of many variables, expansion formulas are very important, which make it possible to represent a function of many variables in the form of an infinite sum of products of several hypergeometric Gauss functions, and this, in turn, facilitates the process of studying the properties of functions of many variables. In the literature, 34 hypergeometric functions of two variables of order 2 (Horn List) are known, and for 11 of them in 1940-1941. Burchnall and Chaundy obtained more than 15 pairs of expansions using the symbolic method. The well-known Poole formula played an important role in the studies of Burchnall and Chaundy, but this one formula was not enough for the expansion of all functions from the Horn list. Therefore, until recently, other Horn hypergeometric functions of two variables remained undecomposed. In this paper, new symbolic operators of Burchnall-Chaundy type are introduced, their properties are studied, and an expansion for 5 Horn hypergeometric functions is established. An application of the new expansion formula to the theory of constructing fundamental solutions for singular elliptic equations is shown.

References

Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Том 1. /Г.Бейтмен, А.Эрдейи. – М.: Наука, 1973. 296 с.

Horn J. Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen // Math.Ann. 1889. No.34. P. 544 – 600. DOI: https://doi.org/10.1007/BF01443681

Burchnall J.L., Chaundy T.W. Expansions of Appell’s double hypergeometric functions // The Quarterly Journal of Mathematics (Oxford). 1940. Ser.11. P. 249–270. DOI: https://doi.org/10.1093/qmath/os-11.1.249

Burchnall J.L., Chaundy T.W. Expansions of Appell’s double hypergeometric functions(II) // The Quarterly J. of Mathematics, Oxford. 1941. Ser.12. P. 112 - 128. DOI: https://doi.org/10.1093/qmath/os-12.1.112

Эргашев Т.Г., Комилова Н.Д. Задача Хольмгрена для многомерного эллиптического уравнения с двумя сингулярными коэффициентами // Вестник Томского государственного университета. Математика и механика. 2020. №63. C. 47–59. DOI: 10.17223/19988621/63/5. DOI: https://doi.org/10.17223/19988621/63/5

Srivastava H.M., Hasanov A., Choi J. Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation // Sohag J.Math. 2015. V.2(1). P.1–10.

Berdyshev A.S, Hasanov A., Ergashev T.G. Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation.II // Complex Variables and Elliptic Equations. 2020. V. 65(2). P.316–332. DOI: https://doi.org/10.1080/17476933.2019.1583219

Эргашев Т.Г. Третий потенциал двойного слоя для обобщенного двуосесимметричес-кого уравнения Гельмгольца // Уфимский математический журнал. 2018. Т. 10. Вып. 4. С.111–122. DOI: https://doi.org/10.13108/2018-10-4-111

Эргашев Т.Г. Четвертый потенциал двойного слоя для обобщенного двуосе-симметрического уравнения Гельмгольца // Вестник Томского государственного университета. Математика и механика. 2017. №50. С.45–56. DOI: https://doi.org/10.17223/19988621/50/4

Karimov E.T., Nieto J.J. The Dirichlet problem for a 3D elliptic equation with two singular coefficients // Computers and Mathematics with Applications. 2011. 62. P. 214–224. DOI: 10.1016/j.camwa.2011.04.068. DOI: https://doi.org/10.1016/j.camwa.2011.04.068

Poole E. G. Introduction to the Theory of Linear Differential Equations./E.G.Poole. – Oxford, Clarendon (Oxford University) Press, 1936.

Эргашев Т.Г., Сафарбаева Н.М.. Задача Хольмгрена для многомерного уравнения Гельмгольца с одним сингулярным коэффициентом // Вестник Томского государственного университета. Математика и механика. 2019. 62. C. 55–67. DOI: https://doi.org/10.17223/19988621/62/5

Mavlyaviev R.M., Garipov I.B. Fundamental solution of multidimensional axisymmetric Helmholtz equation // Complex variables and elliptic equations. 2016. No.62. P.287–296. DOI: https://doi.org/10.1080/17476933.2016.1218853

Смирнов М.М. Вырождающиеся эллиптические и гиперболические уравнения: /М.М.Смирнов. – М.: Наука, 1966. 292 с.

Киприянов И.А., Кононенко В.И. Фундаментальные уравнения В-эллиптических уравнений. Дифференциальные уравнения. 1967, Т.3, №1. С.114 –129.

Published

2023-12-30

How to Cite

Ergashev, T., Arzikulov, Z., & Khalmirzayev, M. (2023). EXPANSION FORMULAS FOR DOUBLE HYPERGEOMETRIC FUNCTIONS AND ITS APPLICATION TO THE THEORY OF SINGULAR ELLIPTIC EQUATIONS: EXPANSION FORMULAS FOR DOUBLE HYPERGEOMETRIC FUNCTIONS AND ITS APPLICATION TO THE THEORY OF SINGULAR ELLIPTIC EQUATIONS. Journal of Osh State University. Mathematics. Physics. Technical Sciences, (2(3), 149–158. https://doi.org/10.52754/16948645_2023_2_149