ВЕСТНИК ОШСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МАТЕМАТИКА, ФИЗИКА, ТЕХНИКА. 2023, №1

УДК 515.12

https://doi.org/10.52754/16948645 2023 1 281

SOME PROPERTIES UNIFORM SPACE AND ITS HYPERSPACE

Beshimov Ruzinazar Bebutovich, Dr Sc, professor, rbeshimov@mail.ru Safarova Dilnora Teshaboevna, teacher, safarova.dilnora87@mail.ru National University of Uzbekistan Tashkent, Uzbekistan

Abstract. In this paper, we will study the connection between a uniformly connected, uniformly pseudocompact, P-precompact and its hyperspace. It is proved that if a uniform space (X, \mathcal{U}) is uniformly pseudocompact iff $(\exp_c X, \exp_c \mathcal{U})$ is uniformly pseudocompact. It is also shown that if a uniform space (X, \mathcal{U}) is P-precompact, then a uniform space $(\exp_c X, \exp_c \mathcal{U})$ is P-precompact.

Key words: Hyperspace, uniformity, uniform space, uniformly connected, uniformly pseudocompact, P- precompact.

НЕКОТОРОЕ СВОЙСТВА РАВНОМЕРНОЕ ПРОСТРАНСТВО И ЕГО ГИПЕРПРОСТРАНСТВО

Бешимов Рузиназар Бебутович, д.ф.-м.н., профессор, rbeshimov@mail.ru
Сафарова Дилнора Тешабоевна, преподаватель, safarova.dilnora87@mail.ru
Национальный университет Узбекистана
Ташкент, Узбекистан

Аннотация. В этой статье мы изучим связь между равномерно связным, равномерно псевдокомпактным, P – предкомпактом и его гиперпространством. Доказано, что если равномерное пространство (X,\mathcal{U}) равномерно псевдокомпактно тогда и только тогда, когда $(\exp_c X, \exp_c \mathcal{U})$ равномерно псевдокомпактно. Также показано, что если равномерное пространство (X,\mathcal{U}) P – предкомпактно, то равномерное пространство $(\exp_c X, \exp_c \mathcal{U})$ P – предкомпактно.

Ключевые слова: гиперпространство, равномерное пространство, равномерность, равномерное связное пространство, равномерное псевдокомпактное пространство, P – прекомпактное пространство.

Introduction (Введение)

In [1], the connection between a finally compact, pseudocompact, extremely disconnected, \aleph -space and its hyperspace is studied. It is proved: if the uniform space (X, \mathscr{U}) is uniformly paracompact, then $(\exp_c X, \exp_c \mathscr{U})$ is uniformly paracompact, if the uniform space (X, \mathscr{U}) is uniformly R-paracompact, then uniform space $(\exp_c X, \exp_c \mathscr{U})$ is uniformly R-paracompact. In [2] the properties of space of the G-permutation degree, like: weight, uniform connectedness and index boundedness are studied. It was proved the G-permutation degree proserves the uniformly connected and index bounded. In the work [3] are established that the functor of idempotent probability measures with a compact support transforms open maps into open maps and preserves the weight and the completeness index of uniform spaces.

Definition 1 [4]. Let X be a nonempty set. A family \mathcal{Q} of coverings of a set X is called uniformity on X if the following conditions are satisfied:

- (P1) If $\alpha \in \mathcal{U}$ and α is inscribed in some cover β of the set X, then $\beta \in \mathcal{U}$.
- (P2) For any $\alpha_1 \in \mathcal{U}$, $\alpha_2 \in \mathcal{U}$ there exists $\alpha \in \mathcal{U}$, which is inscribed in α_1 and α_2 .
- (P3) For any $\alpha \in \mathcal{U}$, there exists $\beta \in \mathcal{U}$ strongly star inscribed in α .

(P4) For any x, y of a pair of different points of X, there exists $\alpha \in \mathcal{U}$ such that no element of α contains both x and y.

A family \mathcal{U} consisting of a set X satisfying conditions (P1) - (P3) is called a pseudo-uniformity on X; and the pair (X, \mathcal{U}) is a pseudo-uniform space.

A family \mathcal{U} consisting of a set X satisfying conditions (P1) - (P4) is called a uniformity on X; and the pair (X, \mathcal{U}) is a uniform space.

Proposition 1 [4]. For any uniformity of \mathscr{U} on X, the family $\tau_{\mathscr{U}} = \{O \subset X : \text{for each } x \in O \text{ exists } \alpha \in \mathscr{U} \text{ such that } \alpha(x) \subset O\}$ is a topology on X and the topological space $(X, \tau_{\mathscr{U}})$ is a T_1 -space.

The topology of $\tau_{\mathcal{U}}$ is called the topology generated or induced by the uniformity of \mathcal{U} .

Let (X, \mathcal{U}) be a uniform space and $\exp X$ the set of all nonempty closed subsets of the space $(X, \tau_{\mathcal{U}})$. For each $\alpha \in \mathcal{U}$, put $P(\alpha) = \{\langle \alpha' \rangle : \alpha' \subseteq \alpha \}$, where $\langle \alpha' \rangle = \{F \in \exp X : F \subseteq \cup \alpha' \text{ and } F \cap A \neq \emptyset \text{ for each } A \in \alpha' \}$.

Proposition 2 [8]. If \mathscr{B} is the base of a uniform space (X, \mathscr{U}) , then $P(\mathscr{B}) = \{P(\alpha) : \alpha \in \mathscr{B}\}$ forms a base of some uniformity $\exp \mathscr{U}$ on $\exp X$.

A uniform space $(\exp X, \exp \mathcal{U})$ is called a hyperspace of closed subsets of a uniform space (X,\mathcal{U}) , and uniformity $\exp \mathcal{U}$ is called Hausdorff uniformity on $\exp X$.

Remark 1 [8]. Let $\exp_c X$ be the set of all nonempty compact subsets of the uniform space (X, \mathcal{U}) . For each $\alpha \in \mathcal{U}$, put $K(\alpha) = \{\langle \alpha' \rangle : \alpha' \subseteq \alpha \text{ and } \alpha' - \text{finite} \}$.

Note that $K(\alpha)$ is the cover of the set $\exp_{\alpha} X$.

Corollary 1 [5]. Let (X,\mathcal{U}) be a uniform space. Then $w(\mathcal{U}) = w(\exp \mathcal{U})$.

Corollary 2 [5]. If the uniform space (X, \mathcal{U}) is metrizable, then its hyperspace $(\exp X, \exp \mathcal{U})$ is also metrizable.

Theorem 1. If (X,\mathcal{U}) is a uniform space and $\alpha \in \mathcal{U}$ is a cover of (X,\mathcal{U}) . Then the following equality is true $\lceil \langle \alpha' \rangle \rceil = \langle \lceil \alpha' \rceil \rangle$, where $\langle \alpha' \rangle \in P(\alpha)$ and $P(\alpha) \in \exp_c \mathcal{U}$.

A uniform space (X,\mathcal{U}) is called uniformly connected, and uniformity \mathcal{U} is connected if any uniformly continuous mapping $f:(X,\mathcal{U})\to(D,\mathcal{U}_D)$ of the uniform space (X,\mathcal{U}) into any discrete uniform space (D,\mathcal{U}_D) is constant.

A finite sequence $\{A_1, A_2, ..., A_n\}$ of subsets of a set X is called linked if $A_i \cap A_{i+1} \neq \emptyset$ of each i = 1, 2, ..., n-1.

Definition 2 [4]. A uniform space (X,\mathcal{U}) is called uniformly linked if for any cover $\alpha \in \mathcal{U}$ there exists a natural number n, such that to any points $x, y \in X$ one can choose a linked sequence $\{A_1, A_2, ..., A_k\} \subset \alpha$, such that $k \le n$, $x \in A_1$, $y \in A_k$.

Proposition 3 [4]. For a uniform space (X, \mathcal{U}) , the following conditions are equivalent:

- (1) The uniform space (X, \mathcal{U}) is uniformly connected.
- (2) The uniformity of ${\cal Q}$ does not contain disjoint covers consisting of at most one element.

- (3) For any $\alpha \in \mathcal{U}$ and for any point $x \in X$, $\bigcup_{n=1}^{\infty} \alpha_n(x) = X$.
- (4) For any $\alpha \in \mathcal{U}$ and for any points of $x, y \in X$ there exists a finite linked sequence $\{A_1, A_2, ..., A_k\} \subset \alpha$, such that $x \in A_1$, $y \in A_k$.

Теорема 2. A uniform space (X,\mathcal{U}) is uniformly linked if and only if the uniform space $(\exp_c X, \exp_c \mathcal{U})$ is uniformly linked.

It follows from Proposition 3 that every uniformly linked uniform space (X,\mathcal{U}) is uniformly connected.

Corollary 3. A uniform space (X, \mathcal{U}) is uniformly connected if and only if a uniform space $(\exp_c X, \exp_c \mathcal{U})$ is uniformly connected.

Definition 3 [4]. A uniform space (X, \mathcal{U}) is called uniformly pseudocompact if every uniformly continuous real-valued function defined on (X, \mathcal{U}) is bounded.

Every Tychonoff pseudocompact space X with universal uniformity \mathcal{U}^* is uniformly pseudocompact. Conversely, if a universal space (X,\mathcal{U}) is uniformly pseudocompact, then its topological space is pseudocompact.

A uniform space (X, \mathcal{U}) is uniformly pseudocompact if for every countable centered open cover $\alpha = \{V_i : i \in M\}$ of the uniform space (X, \mathcal{U}) the intersection $\bigcap_{i=1}^{\infty} [V_i]$ non-empty.

Theorem 3. A uniform space (X, \mathcal{U}) is uniformly pseudocompact if and only if a uniform space $(\exp_{\mathcal{C}} X, \exp_{\mathcal{C}} \mathcal{U})$ is uniformly pseudocompact.

A cover γ of a uniform space (X,\mathcal{U}) is said to be uniformly star-finite if there exists a uniform cover $\alpha \in \mathcal{U}$ such that $\gamma(B)$ intersects only a finite number of elements of γ for any $B \in \alpha$ [6].

A cover γ of a uniform space (X,\mathcal{U}) is called uniformly point-finite if for each $x \in X$ the set $\{a \in M : x \in A_a \in \gamma\}$ is finite.

Let us give examples of the property P of uniform covers of uniform spaces:

- (1) covers of brevity $\leq n$;
- (2) star-finite covers;
- (3) point-finite covers;
- (4) finite covers;
- (5) covers of power $\leq \tau$, $\tau \geq \aleph_0$.

A uniform space (X, \mathcal{U}) is called P-precompact if the uniformity \mathcal{U} has a base \mathscr{B} consisting of covers with property P.

Theorem 4. A uniform space (X, \mathcal{U}) is P-precompact if and only if a uniform space $(\exp_c X, \exp_c \mathcal{U})$ is P-precompact, where properties P is a uniformly point-finite cover of uniform space.

Теорема 5. A uniform space (X, \mathcal{U}) is P-precompact if and only if a uniform space $(\exp_c X, \exp_c \mathcal{U})$ is P-precompact, where properties P is a uniformly star-finite cover of uniform space.

Reference

- 1. Beshimov, R.B. Some Topological Properties of a Functor of Finite Degree[Text]/Beshimov R.B., Safarova D.T., // Lobachevskii Journal of Mathematics, 2021, 42(12), crp. 2744–2753.
- 2. Beshimov, R.B. Index boundedness and uniform connectedness of space of the G-permutation degree[Text]/ Beshimov R.B., Georgiou D.N., Zhuraev R.M. // Applied General Topology, 2021, 22(2), crp. 447–459.
- 3. Borubaev, A.A. The functor of idempotent probability measures and maps with uniformity properties of uniform spaces[Text]/ Borubaev A.A., Eshkobilova D.T. // Eurasian Mathematical Journal, 2021, 12 (3), 29-41.
- 4. Борубаев, А.А., Равномерная топология. [Текст]/ Борубаев А.А.// Бишкек. Илим, 2013.-338 с.
- 5. Michael, E. Topologies on spaces of supsets[Text]/ Michael. E. // Trans. Amer. Math. Soc. 1951. № 1 (71). P. 152-172.
- 6. Борубаев, А.А. Равномерные пространства и равномерно непрерывные отображения. [Текст]/ Борубаев А.А. // Фрунзе: Илим, 1990.-172 с.