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Abstract. The paper investigates a system of three parabolic equations, which is a model of the

spatiotemporal state of two competing populations of species, both of which are chemotactically attracted by the same

signal substance. Individuals move according to random diffusion and chemotaxis, and both populations reproduce

themselves and mutually compete with each other according to the classical Lotka-Volterra kinetics. The global

existence and uniqueness of the classical solutions of this system is proved by the contraction mapping principle using

a priori Lp estimates and Schauder-type estimates for parabolic equations.
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Hnemumym mamemamuxu AH PY3, Tawxenm, Y30exucman

Annomayusn. B cmamve uccnedyemcs cucmema mpex napadoautecKux ypasueHuil, npedcmasiaouas cooou

MOOenb NpOCMPAHCIMBEHHO-BPEMEHHO20 COCMOSIHUSL 08YX KOHKYPUPYIOWUX NONYIAYUU 6UO08, XeMOMAKCUYECKU
NPUMASUBAEMBIX OOHUM U TEM Jice CUSHATLHBIM Gewjeceom. Ocobu nepemewyarmes 8 COOMEemMcmsaul co CLy4atHol
oughpysueti u xemomaxcucom, u 06e NONYAAYUU BOCHPOUIBOOAMCI U 83AUMHO KOHKYPUPYIOM Opye ¢ OPY2OM CO2NACHO
Kkaaccuveckou kunemuke Jlomxa-Bonemeppa. Inobanvrnoe cywecmseosanue u eOUHCMBEHHOCMb KAACCUYECKUX

pewenuti 3moi cucmemvl 00KA3bLLEACNCS. NPUHYUNOM CHCUMATOUUX OMOOPAICEHUTE C UCNONb30BAHUEM ANPUOPHBIX
oyenox Lp u oyenox muna Lllayoepa ons napadonuveckux ypasHenuil.
Kniouesvie cnosa: mooenv Kennepa—Cezens, xemomaxcuc, anpuopHule oyeHku, 2100aibHoe peulenue .

1. Introduction ( Beenenue). It is known that in the mathematical modeling of the self-
organization of living cells, the system of equations "Keller-Segel" is used [1],

U, = Au—V(Uuwvv), 1)
vV, =Av—-Vv+u
The system describes the general behavior of a set of cells under the influence of

chemotaxis. Under such conditions, the movement of each individual cell, although not entirely
predictable, follows a preferred direction, namely to higher concentrations of a certain signaling

chemical. If u(xt) is the cell density, and v(x,t) is the chemical concentration, then the first

equation in (1) reflects the interaction of non-directional diffusion motion, on the one hand, and
the “chemotactic motion” controlled by Vv, with others. The second equation expresses the
assumption of the model that the signaling substance, in addition to diffusion and degradation, like
most chemicals, is constantly produced by living cells. This association is known to be present in
many other biologically significant situations associated with chemotaxis [2]. The striking feature
of (1) is that, despite its simple mathematical structure, it turned out to be able to describe the
phenomenon of spatial self-organization of cells.
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Usually, consider two competing populations of biological species that are attracted to the
same chemical stimulus. All individuals move according to the laws of random diffusion and
chemotaxis, and both populations reproduce and mutually compete with each other according to
the classical Lotka-Volterra kinetics .

In this note, we study a problem with periodic boundary conditions for a quasilinear system
proposed by J. Tello and M. Winkler [3] and investigated in [4], which models the dynamics of
populations of two competing species in the regionQ={(x,t) ; O<x<L,t >0}, both of which
are chemotactically attracted by the same signal substance

U = (du, —w,), + (L - u - av)u

= (dv, —éw), + K, (1 — au — v)y, (x,t) e
W, =W, —AW + U + V, (2)
u(x, 0) = uy(x), v(x 0) =v,(x), w(x, 0) =wy(x), xe(0, L),
U(o,t) = U(Lt), U,(0t) = U,(Lt), t>0,

where U (X, t)=(u, v, w), u(x, t)and v(x, t) are the population densities of two competing
species in space-time (X, t) and w( x, t) are concentration of the attracting substance, d;, 1, &

, 1 =1, 2 A are positive constants, y and & are assumed to be non-negative constants. It is

assumed that both species u and v direct their movements chemotactically along the concentration
gradient of the chemical above the habitat. This is modeled by taking both » > 0 and £ > O.

Biologically, y and & measure the strength of chemical attraction to species U andV,

respectively. Species kinetics is assumed to be of the classical Lotka-Volterra type, where H H

u, v a,

measure the internal growth rate, and % interpret the strength of interspecific
competition. In addition, the chemical is produced by both species at the same rate with no
saturation effect and at the same time consumed by a particular enzyme in the environment at a

rate of 4 .
In the paper, first, some a priori Ly estimates and Schauder-type estimates are established.
Next, we prove that model (1) has a unique classical global solution for any chemotactic

coefficients ¥ ¢ > 0.
2. A priori estimates and global existence

Let us now turn to establishing L -estimates (u, v, W) under the above conditions. Global
existence (2) is a consequence of several lemmas.
The no negativity of (u, v, w) follows from maximum principles [5].

Lemmal. If w, B, > 0 and (u, v, W) is the only non-negative solution of equation (2)
n (0, T, ), then there is a constant C>0 depending on |u,, V,, W], and L such that
oy + W O, < C forallte(0 T,). ()
Proof. We integrate the u—equation of (1) over

d
dt

Ju(-. ¢

+ v C

(o,L)

L(oL)
) and have that

u(x, t)dx M (1 —u — av)udx (1 - u)udx ,

(0,
“Jut

O ey ™
O e



then it follows from the Gronwall’s lemma that

L L
j u(x, t)dx < e ™ f Up(x)dx + L,
0 0

similarly we can show
L

L
jv(x, t)dx < e ™ j Vo(X)dx + L,
0

0

Integrating the w—equation over(O, L), we easily see that ||w( t)

to) is uniformly

bounded for all t e (0, oo). This completes the proof of Lemma 1.

To obtain their L —bounds, we shall see that it is sufficient to obtain the boundedness of

v (-, 1)

.- For this purpose, we first convert the w—equation into the following abstract form

t
w(, t) =e“Pw + '[e A (- A)W(, s) +u(, S) + V(- 5))ds, (4)
0
2
where A = % . To estimate W(x, t) in (4), we apply the well-known smoothing properties of
X

operator —A + 1 and estimates between the linear analytic semigroups generated by{e ‘A}DO. We

have for all 1 < p < g < oo, there exists a positive constant C dependent on W, M,, and

I, such that

”wl‘q(O,L)

(-, )

1

)SC(1+:[e ’V(t’s)(t—s)fé' %[E’ﬂ”w( s)+u(-, s)+v(-, s)

Wl‘q(O,L LP ds)' (5)

where te(0, T), T (0, ], v :% is the first Neumann eigenvalue of —A .
Lemma 2. Let us assume the same conditions (U, V,, W,) as in Lemma 1. For any

qe(1, =), there exists a positive constant C(q)such that

(-, t)”Wm(o,L) < C(q), vte(0, T,,,). (6)
Proof. Let p = 1in (5), then we have that

}o,L) +

(e O, A+ e " 1=s) 77200l u(., )

Jv(- s) )ds) . )

On the other hand, there exists a constant C, > 0 such that for any g € (1, «)

Lo,L) +||W(" S) Lo,L)

t L
sup Ie Mt -s) M ds < Gy,
) 0

te(0,00
then we conclude from (7) that
||W(" t) wH(0,L) = C(1+SS€l(.:)E)(”u (s) t(o.L) +||V(" s)
Finally, (6) is an immediate consequence of (1) and (8).
Lemma 3. If pe(2, =), then there is a constant C(p) > Osuch that

+|w(-, s)

con) - 8

*(o,L)



5> < C(p), Vte(0, T ) - )
t)], < C(p), can be

lu( V), v 1)
Proof. We shall only show that u(-, t)|, < C(p), since |v(-,
proved by the same arguments. For p > 2, we multiply the first equation of (1) by u ** and

integrate it over (0 L) by parts, then it follows from simple calculations that

! d _[up = ju’”u = Iupl(du = ZUW, ), +JL-U1(1_“ —ayvju’
0

R

2

- 4dl(p - 1) j .-
p* >
Where C, is a positive constant that depends on p . It follows from Holder’s and Young’s

L

+;(_[(u"‘l)xuwX - %Iu‘”ﬁg
0

0

p—l

(=

<

2(p Z.[UZ(UZ) _ %Tup+l+cl’ (10)

inequality that

Lp »p [} » P
IUZ(UZ)XWXdX < Ju 2 p1) (U il e = ”LI”ZLP+1 (u 2)X ”W ” AP
0 L 12
<24, z)x +Cy Ul (11)
Px 12
In light of (11), we obtain from (10) that
L
~ 8 urdx<Cyfulf. -t 4, (12)
p dt
L
Denoting y, (t) :J u®(x,t)dx, one can apply Holder’s on (12) to obtain that
0

P+l
Yo (1) £ =Cy” (1) + Co ¥, (0) = Juo, -
We conclude that y (t) < C(p)for allte(0, o). Similarly, we can show that

L
I u® (x,t)dx < C(p). This completes the proof of Lemma 3.
0

Theorem 4. Suppose a,, W, I =1, 2,and A are positive constants. Then for positive

initial data (uy, vy, Wy) e H'(0, L)xH*(0, L)xH*(0, L)and any constants y, & e R, problem

(1) has a unique bounded positive solution (u(X, t), v(X, t), w(x, t)) defined on

[0, L] x [0, =) such that (u(-,t), v(-,t), w(-,t)) e C([0,), H* (0, L)xH*(0, L)xH*(0,L))

and (u, v) e CZ?“ ([0, L]x[0, «)) for somea e (0, % j
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