ВЕСТНИК ОШСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МАТЕМАТИКА, ФИЗИКА, ТЕХНИКА. 2023, №1

УДК 517

https://doi.org/10.52754/16948645 2023 1 250

INVERSE PROBLEMS FOR FRACTIONAL SCHRÖDINGER AND SUBDIFFUSION EQUATIONS

Ashurov Ravshan Radjabovich, Dr Sc., professor, ashurovr@gmail.com Shakarova Marjona Dilshod qizi. shakarova2104@gmail.com Institute of Mathematics named after V.I. Romanovsky, Tashkent, Uzbekistan

Abstract. The inverse problems of determining the right-hand side of the Schrödinger and the sub-diffusion equations with the fractional derivative is considered. In the problem 1, the time-dependent source identification problem for the Schrödinger equation, in a Hilbert space H is investigated. To solve this inverse problem, we take the additional condition $B[u(\cdot,t)]=\psi(t)$ with an arbitrary bounded linear functional B. In the problem 2, we consider the subdiffusion equation with a fractional derivative of order $\rho \in (0,1]$, and take the abstract operator as the elliptic part. The right-hand side of the equation has the form g(t)f, where g(t) is a given function and the inverse problem of determining element f is considered. The condition $u(t_0)=\psi$ is taken as the overdetermination condition, where t_0 is some interior point of the considering domain and ψ is a given element. Obtained results are new even for classical diffusion equations. Existence and uniqueness theorems for the solutions to the problems under consideration are proved.

Key words: Schrödinger and subdiffusion equation, equation, the Caputo derivatives, Fourier method.

ОБРАТНЫЕ ЗАДАЧИ ДЛЯ ДРОБНЫХ УРАВНЕНИЙ ШРЕДИНГЕРА И СУБДИФФУЗИИ

Ашуров Равшан Раджабович, д.ф.-м.н., профессор, ashurovr@gmail.com
Шакарова Маржона Дилшод қизи.
shakarova2104@gmail.com
Институт математики имени В.И. Романовский,
Ташкент, Узбекистан

Аннотация. Рассмотрены обратные задачи определения правой части уравнения Шредингера и уравнения субдиффузии с дробной производной. В задаче 1 исследуется нестационарная задача идентификации источника для уравнения Шрёдингера , в гильбертовом пространстве H . Для решения этой обратной задачи возьмем дополнительное условие $B[u(\cdot,t)]=\psi(t)$ с произвольным ограниченным линейным функционалом B . В задаче 2 мы рассматриваем уравнение субдиффузии с дробной производной порядка $\rho \in (0,1]$, а в качестве эллиптической части берем абстрактный оператор. Правая часть уравнения имеет вид g(t)f , где g(t) - заданная функция и рассматривается обратная задача определения элемента f . В качестве условия переопределенности принимается условие $u(t_0)=\psi$, где t_0 - некоторая внутренняя точка рассматриваемой области, ψ - заданный элемент. Полученные результаты являются новыми даже для классических уравнений диффузии. Доказаны теоремы существования и единственности решений рассматриваемых задач.

Ключевые слова: уравнение Шредингера и субдиффузии, уравнение, производные Капуто, метод Фурье.

Introduction

The fractional integration of order $\sigma < 0$ of the function h(t) defined on $[0, \infty)$ has the form (see, [1]):

$$J_{t}^{\sigma}h(t) = \frac{1}{\Gamma(-\sigma)} \int_{0}^{t} \frac{h(\xi)}{(t-\xi)^{\sigma+1}} d\xi, \quad t > 0,$$

provided the right-hand side exists. Here $\Gamma(\sigma)$ is Euler's gamma function. Using this definition one can define the Caputo fractional derivative of order ρ ,

$$D_t^{\rho}h(t) = J_t^{\rho-1}\frac{d}{dt}h(t).$$

If we first integrate and then differentiate, then we get the Riemann-Liouville derivative.

Let H be a separable Hilbert space. Let $A: H \to H$ be an arbitrary unbounded positive selfadjoint operator in H.

Let τ be an arbitrary real number. We introduce the power of operator A, acting in H according to the rule

$$A^{\tau}h = \sum_{k=1}^{\infty} \lambda_k^{\tau} h_k v_k.$$

Obviously, the domain of definition of this operator has the form

$$D(A^{\tau}) = \{ h \in H : \sum_{k=1}^{\infty} \lambda_k^{2\tau} |h_k|^2 < \infty \}.$$

For elements $h \in D(A^{\tau})$ we introduce the norm:

$$||h||_{\tau}^{2} = \sum_{k=1}^{\infty} \lambda_{k}^{2\tau} |h_{k}|^{2} = ||A^{\tau}h||^{2}$$

and together with this norm $D(A^{\tau})$ turns into a Hilbert space.

Problem 1. Let $\rho \in (0,1)$ be a fixed number. Consider the following Cauchy problem

$$\begin{cases} iD_t^{\rho} u(t) + Au(t) = p(t)q + f(t), & 0 < t \le T, \\ u(0) = \varphi, \end{cases}$$
(1.1)

where a part of the source function p(t) is a scalar function, $f(t) \in C(H)$ and $\varphi, q \in H$ are known elements of H.

To solve this time-dependent source identification problem one needs an extra condition. Following the papers of A. Ashyralyev et al. [2] we consider the additional condition in a rather general form:

$$B[u(t)] = \psi(t), \quad 0 \le t \le T, \tag{1.2}$$

where $B: H \to R$ is a given bounded linear functional, and $\psi(t)$ is the given scalar function. We call the Cauchy problem (1.1) together with additional condition (1.2) the inverse problem.

Problem 2. Let $\rho \in (0,1]$ be a fixed number. Consider the Cauchy problem

$$\begin{cases}
D_t^{\rho} u(t) + A u(t) = g(t) f, & 0 < t \le T, \\
u(0) = \varphi.
\end{cases}$$
(1.3)

Here $\varphi, f \in H$ are known elements of H and a part of the source function g(t) is a scalar function.

To solve the inverse problem of determining the right-hand side of the equation, we use the following additional condition:

$$u(t_0) = \psi, \tag{1.4}$$

where t_0 is a given fixed point of the segment (0,T].

Main results for the Problem 1

Theorem 1. Let $Bq \neq 0$, $\varphi \in H$ and $D_t^{\rho} \psi(t) \in C[0,T]$. Further, let $\epsilon \in (0,1)$ be any fixed number and $q \in D(A^{1+\epsilon})$ and $f(t) \in C([0,T];D(A^{\epsilon}))$. Then the inverse problem has a unique solution $\{u(t), p(t)\}$.

Theorem 2. Let assumptions of Theorem 1 be satisfied and let $\varphi \in D(A)$. Then the solution to the inverst problem obeys the stability estimate

$$\|D_{t}^{\rho}u\|_{C(H)} + \|Au\|_{C(H)} + \|p\|_{C[0,T]} \le C_{\rho,q,B,\epsilon} [\|\varphi\|_{1} + \|\psi\|_{C[0,T]} + \max_{0 \le t \le T} \|f(t)\|_{\epsilon}],$$

where $C_{\rho,q,B,\epsilon}$ is a constant, depending only on ρ,q , B and ϵ .

Similar results hold for the Riemann-Liouville fractional derivative.

Main results for the Problem 2

Lemma 1. Let $\rho = 1$, $g(t) \in C^1[0,T]$ and $g(t_0) \neq 0$. Then there exists a number k_0 such that, starting from the number $k \geq k_0$, the following estimates hold:

$$\frac{C_0}{\lambda_k} \leq |b_{k,1}(t_0)| \leq \frac{C_1}{\lambda_k},$$

where

$$b_{k,1}(t_0) = \int_{0}^{t_0} e^{-\lambda_k s} g(t_0 - s) ds$$

and constants C_0 and $C_1 > 0$ depend on k_0 and t_0 .

Lemma 2. Let $\rho \in (0,1)$, $g(t) \in C^1[0,T]$ and $g(0) \neq 0$. Then there exist numbers $m_0 > 0$ and k_0 such that, for all $t_0 \leq m_0$ and $k \geq k_0$, the following estimates hold:

$$\frac{C_0}{\lambda_k} \le |b_{k,\rho}(t_0)| \le \frac{C_1}{\lambda_k},$$

where

$$b_{k,\rho}(t_0) = \int_{0}^{t_0} g(t_0 - s) s^{\rho - 1} E_{\rho,\rho}(-\lambda_k s^{\rho}) ds$$

and constants C_0 and $C_1 > 0$ depend on m_0 and k_0 .

Let $\mathbb{N}=K_{\rho}\cup K_{0,\rho}$, where \mathbb{N} is the set of all natural numbers. K_{ρ} and $K_{0,\rho}$ are sets such that: if $b_{k,\rho}(t_0)\neq 0$, $k\in K_{\rho}$, otherwise, if $b_{k,\rho}(t_0)=0$, then $k\in K_{0,\rho}$.

Theorem 3. Let $\rho \in (0,1]$, $\varphi \in H$, $\psi \in D(A)$. Moreover let function $g(t) \in C[0,T]$ and $g(t) \neq 0$, $t \in [0,T]$. Then there exists a unique solution of the inverse problem (1.3)-(1.4).

Theorem 3 proves the existence and uniqueness of a solution to the inverse problem (1.3)-(1.4) under condition $g(t) \in C[0,T]$ and $g(t) \neq 0$, $t \in [0,T]$, i.e., g(t) does not change sign. Article [3], Example 3.1, shows the non-uniqueness result if g(t) changes its sign. It is proved that if function g(t) does not change sign, then the solution of the inverse problem is unique. Naturally, questions arise: if g(t) changes sign, is uniqueness always violated? What can be said about the existence of a solution? How many solutions can there be?

It should be emphasized that the answers to these questions were not known even for the classical diffusion equation (i.e. $\rho = 1$).

Lemmas 1 and 2 proved above allow us to answer these questions. Let us formulate the corresponding result.

Theorem 4. Let $\varphi \in H$, $\psi \in D(A)$. Further, we will assume that for $\rho = 1$ the conditions of Lemma 1 are satisfied, and for $\rho \in (0,1)$, the conditions of Lemma 2 are satisfied and t_0 is sufficiently small. If set $K_{0,\rho}$ is empty, i.e. $b_{k,\rho}(t_0) \neq 0$, for all k, then there exists a unique solution of the inverse problem (1.3)-(1.4). If set $K_{0,\rho}$ is not empty, then for the existence of a solution to the inverse problem, it is necessary and sufficient that the following conditions

$$\psi_k = \varphi_k E_{\varrho}(-\lambda_k t_0), \quad k \in K_{0,\varrho}, \tag{3.1}$$

be satisfied. In this case, the solution to the problem (1.3)-(1.4) exists, but is not unique.

Remark. For conditions (3.1) to be satisfied, it suffices that the following orthogonality conditions hold:

$$\varphi_k = (\varphi, v_k) = 0, \psi_k = (\psi, v_k) = 0, k \in K_{0, \rho}.$$

References

- 1. Pskhu, A.V. Fractional Differential Equations. [Text]/ Pskhu A.V. // Moscow: NAUKA. 2005 [in Russian].
- 2. Ashyralyev, A. Time-dependent source identification problem for the Schrodinger equation with nonlocal boundary conditions, [Text]/ Ashyralyev.A., Urun.M. // In: AIP Conf. Proc, V:2183, 2019.
- 3. Slodichka, M. Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation[Text]/ Slodichka M., Sishskova K., Bockstal V. //Appl. Math. Letters, V. 91, pp. 15-21, 2019.