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Abstracts. Analytical and geometrical methods are applied to integrate an ordinary differential equation of 

third order. The main objective is to compare both approaches and show the possibilities that each one of them offers 

in the integration process of the considered equation, specially when not only Lie point symmetries but also 

generalized symmetries are involved. The analytical method of order reduction by using a generalized symmetry 

provides the general solution of the equation but in terms of a primitive that cannot be explicitly evaluated. On the 

other hand, the application of geometrical tools previously reported in the recent literature leads to two functionally 

independent first integrals of the equation without any kind of integration. In order to complete the integration of the 

given third-order equation, a third independent first integral arises by quadrature as the primitive of a closed 

differential one-form. From these first integrals, the expression of the general solution of the equation can be 

expressed in parametric form and in terms of elementary functions. 
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1. Introduction. 

The Lie symmetry approach for reducing the order and integrating ordinary differential 

equations (ODEs) is one of the most powerful and used tools available for handling ODEs and 

their exact solutions. It is well known that an 𝑛𝑡ℎ-order equation admitting an 𝑟-dimensional 

algebra of Lie point symmetries can be reduced to an (𝑛 − 𝑟)𝑡ℎ-order equation in terms of the 

common differential invariants of the symmetries. Furthermore, if this algebra is solvable then one 

can recover the solution of the original equation by solving the reduced ODE and carrying out 𝑟 

consecutive quadratures [1, 2, 3, 4, 5]. In this paper, we will refer to these procedures of order 

reduction or integration of ODEs as analytical (or classical) methods. This method can be extended 

to use higher-order symmetries to reduce the order of the equation [3, 6, 7], although in this case 

the calculation of the differential invariants gets more complicated since, in general, it is not 

possible to obtain a complete set of differential invariants by derivation of lower order invariants. 

Furthermore, the reduction process in this situation for an 𝑛𝑡ℎ-order ODE leads to a system of 𝑛 −

1 first-order ODEs that is not equivalent to an (𝑛 − 1)𝑡ℎ-order ODE. 

In the last decade of the past century, P. Basarab-Horwath [8], J. Sherring and G. Prince 

[9], T. Hartl and C. Athorne [10] and M. A. Barco and G. Prince [11] obtained powerful 

geometrical results regarding the integration by quadratures of involutive distributions of vector 

fields. Such results are based on the concept of solvable structure, an object that generalizes the 

notion of solvable Lie algebra of symmetries of an involutive distribution. These geometrical 

results can be applied to integrate ODEs by quadratures by considering the involutive distribution 

generated by the vector associated to the equation and determining a solvable structure for it. 

Remarkably, the vector fields involved in a solvable structure are not necessarily Lie point nor 

generalized symmetries of the equation. Once a solvable structure is known, the equation can be 

integrated by quadratures by following a procedure that has been studied, applied and generalized 

by many authors over the years since its introduction [10, 11, 12, 13]. 
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In particular, in the general setting of an 𝑛-dimensional manifold, it was developed a 

procedure to integrate by quadratures involutive distributions of vector fields of dimension 𝑟 

admitting an (𝑛 − 𝑟)-dimensional solvable structure ([8, prop. 3], [9, prop. 4.6 and 4.7]). This 

method works by constructing 𝑛 − 𝑟 closed differential 1-forms which belong to the annihilator 

of the distribution and which can be integrated successively. This procedure generalizes a classical 

result known as Lie-Bianchi’s Theorem [14, th. 1.7.2], which uses solvable Lie algebras of 

symmetries instead of solvable structures. We will refer to the application of these last procedures 

to the involutive distribution associated to an ODE as the geometrical method of integration of the 

equation. 

In the present paper we aim to perform a comparison of the results obtained when both the 

analytical and the geometrical methods are applied to integrate a third-order ODE. The considered 

equation can be found in [3, eq. (3.245)], where the authors proved that the equation admits three 

Lie point symmetries and seven first-order symmetries. The analytical method of reduction of 

order is applied using one of the first-order symmetries. We will review this procedure and its 

flaws, and we will see how the geometrical method can give us some advantages in this situation. 

The work is organized as follows. In Section 2 the basics definitions and results regarding 

the method of solvable structures to integrate involutive distributions of vector fields are briefly 

introduced. In Section 3, with the aim of being self-contained, we describe the reduction of order 

of ODEs via Lie point symmetries and generalized symmetries, as well as the application of the 

geometrical methods in the particular case of ODEs. In Section 4, we introduce the ODE under 

study and the Lie point and generalized symmetries admitted by the equation. We also review the 

analytical method of reduction of order described in [3], showing some of the problems that may 

appear when using generalized symmetries. As a consequence, an implicit expression for the 

general solution of the ODE in terms of a primitive that cannot be evaluated is obtained. In Section 

5 we apply geometrical tools to the study of the third-order ODE. It is proved that at least two 

functionally independent first integrals can be obtained without any kind of integration. A third 

functionally independent first integral can be obtained by quadrature as a primitive of certain 1-

form. The geometric approach allows us to give the general solution of the ODE in parametric 

form and expressed in terms of elementary functions, greatly improving the results obtained by 

the analytical method. 

2. Preliminaries. 

Consider an 𝑛-dimensional differentiable manifold 𝑀. Given a connected, open set 𝑈 ⊆

𝑀, the real vector space of smooth functions defined on 𝑈 will be denoted as 𝒞∞(𝑈). The 𝒞∞(𝑈)-

module of smooth vector fields defined on 𝑈 will be denoted as 𝔛(𝑈). The 𝒞∞(𝑈)-module of 

differential 𝑝-forms in 𝑈 will be denoted as Ω𝑝(𝑈) [15, def. 2.15], and the exterior algebra will be 

denoted as Ω∗(𝑈) [15, def. 2.14]. The exterior product of differential forms will be denoted by ∧. 

The contraction of a 𝑝-form 𝜔 by a vector field 𝑋 [16, pg. 72 (d)] will be written as 𝑖𝑋ω, while the 

exterior derivative of a 𝑝-form 𝜔 [16, pg. 70 (b)] will be represented by 𝑑𝜔.  

A collection of 𝑟 vector fields 𝐴1, … , 𝐴𝑟 ∈ 𝔛(𝑈) will be pointwise linearly independent on 

𝑈 (or simply independent) if the vectors 𝐴1(𝑝),… , 𝐴𝑟(𝑝) are linearly independent for each 𝑝 ∈

 𝑈. The same applies for a collection of 𝑟 differential 𝑝-forms. 



The  𝒞∞(𝑈)-module generated by 𝐴1, … , 𝐴𝑟 ∈ 𝔛(𝑈) will be called the 𝑟-dimensional 

distribution 𝒟 generated by the vector fields (see [15, def. 1.56], [13, sec. 2.2]) and will be 

denoted by 

𝒟 = ⟨𝐴1, … , 𝐴𝑟⟩.     (1) 

We will say that 𝑋 ∉ 𝒟 or that 𝑋 is transversal to 𝒟 if the vector fields 𝑋, 𝐴1, … , 𝐴𝑟 are pointwise 

linearly independent in 𝑈. 

An 𝑟-dimensional distribution 𝒟 is said to be involutive if it is closed under the Lie bracket 

[15, def. 1.56]. This condition guarantees, via the well-known Frobenius theorem, the local 

existence of 𝑛 − 𝑟 functionally independent first integrals 𝐼1, … , 𝐼𝑛−𝑟 ∈ 𝒞
∞(𝑈), in which case  

𝑁 = {𝑝 ∈ 𝑈: 𝐼𝑗(𝑝) = 𝐶𝑗 , 𝑗 = 1,… , 𝑛 − 𝑟}    (2) 

are integral manifolds of 𝒟 for 𝐶1, … , 𝐶𝑛−𝑟 ∈ ℝ [15, th. 1.60]. Nevertheless, Frobenius theorem 

does not provide a procedure to compute these first integrals. In order to find them, the concept of 

symmetry of a distribution [9, p. 441] is useful, as we will shortly see: 

Definition 1. Let 𝑈 ⊆ 𝑀 be an open set, and 𝒟 an 𝑟-dimensional distribution. A vector field 𝑌 is 

a symmetry of 𝒟 if for every 𝐴 ∈ 𝒟 it is [𝑌, 𝐴] ∈ 𝒟. A symmetry of 𝒟 is called non-trivial if it is 

transversal to 𝒟. 

 The set of symmetries of 𝒟 will be denoted by Sym {𝒟}. Using Jacobi’s identity, it can be 

proved that Sym {𝒟} is a Lie algebra, that is, it is a real vector space and [𝑋, 𝑌] ∈ Sym {𝒟} 

whenever 𝑋, 𝑌 ∈ Sym {𝒟}. Nevertheless, in general, Sym {𝒟} is not a 𝒞∞(𝑈)-module, since the 

product of a symmetry by a smooth function which does not vanish on 𝑈 generally is not a 

symmetry. 

The knowledge of an (𝑛 − 𝑟)-dimensional solvable Lie algebra of symmetries of an 𝑟-

dimensional involutive distribution allows the computation of 𝑛 − 𝑟 functionally independent first 

integrals of the distribution by quadratures alone, a result known in the literature as Lie-Bianchi’s 

theorem [14, th. 1.7.2]. 

The next concept generalizes the notion of solvable Lie algebra of symmetries of an 𝑟-

dimensional distribution [8, def. 4]: 

Definition 2. Let 𝒟 = ⟨𝐴1, … , 𝐴𝑟⟩ be an 𝑟-dimensional distribution and let {𝑌1, … , 𝑌𝑛−𝑟} be an 

ordered set of pointwise linearly independent vector fields on 𝑈. We will say that the previous 

ordered set is a solvable structure for 𝒟 if: 

 {𝑌1, … , 𝑌𝑛−𝑟 , 𝐴1, … , 𝐴𝑟} are pointwise linearly independent in 𝑈. 

 𝑌𝑛−𝑟 is a symmetry of 𝒟 = ⟨𝐴1, … , 𝐴𝑟⟩. 

 𝑌𝑗 is a symmetry of 𝒟𝑗 = ⟨𝑌𝑗+1, … , 𝑌𝑛−𝑟 , 𝐴1, … , 𝐴𝑟⟩ for every 𝑗 = 1, … , 𝑛 − 𝑟 − 1. 

Observe that, as we announced, an (𝑛 − 𝑟)-dimensional solvable Lie algebra of 

symmetries of an 𝑟-dimensional distribution is a particular case of a solvable structure, as 

according to [17, prop 1.23] there exists a basis of the Lie algebra, 𝑌1, … , 𝑌𝑛−𝑟 ∈ 𝔛(𝑈), such that 

[𝑌𝑖, 𝑌𝑗] = ∑ 𝑐𝑖𝑗
𝑘𝑌𝑘

𝑗−1
𝑘=1 ,  𝑐𝑖𝑗

𝑘 ∈ ℝ,     1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 𝑟.  (3) 

The next result, whose proof can be found, for instance, in [9, prop. 4.6 and 4.7] or in [8, 

prop. 3], allows us to integrate by 𝑛 –  𝑟 successive quadratures any 𝑟-dimensional distribution 



admitting a solvable structure. It generalizes Lie-Bianchi's theorem by requiring the knowledge of 

a solvable structure instead of an (𝑛 − 𝑟)-dimensional solvable Lie algebra of symmetries. Before 

proceeding let us introduce the following notation: given 𝜔1, … , 𝜔𝑟 ∈ Ω
𝑝(𝑈) pointwise linearly 

independent, 

ℐ(𝜔1, … , 𝜔𝑟)       (4) 

will be the ideal generated by the previous 𝑝-forms undertaking exterior products [16, lemma 2.19 

(ii)].  

Theorem 1. Let 𝒟 = ⟨𝐴1, … , 𝐴𝑟⟩  be an 𝑟-dimensional, involutive distribution. Let Ω ∈ Ω𝑛(𝑈) be 

a non-zero 𝑛-form. Suppose that {𝑌1, … , 𝑌𝑛−𝑟} is a solvable structure of 𝒟 and define the following 

1-forms, where the hat denotes omission of the element: 

𝜔𝑗 =
1

𝑖𝑌1…𝑖𝑌𝑛−𝑟𝑖𝐴1…𝑖𝐴𝑟Ω
(𝑖𝑌1 … 𝑖𝑌�̂� … 𝑖𝑌𝑛−𝑟𝑖𝐴1 …𝑖𝐴𝑟Ω) ,    𝑗 = 1, … , 𝑛 − 𝑟.  (5) 

Then the previous 1-forms are pointwise linearly independent in 𝑈 and satisfy  

𝑑𝜔1 = 0, 𝑑𝜔𝑗 ∈ ℐ(𝜔1, … , 𝜔𝑗−1), for 𝑗 = 2,… , 𝑛 − 𝑟.  (6) 

Expressions (6) imply the local existence of a function 𝐼1 such that  

𝜔1 = 𝑑𝐼1.       (7) 

By construction of 𝜔1 (see equation (5) for 𝑗 = 1), we have that 

𝑖𝐴𝑗𝜔1 = 𝑖𝑌𝑘𝜔1 = 0, for 𝑗 = 1, … , 𝑟, 𝑘 = 2, … , 𝑛 − 𝑟.   (8) 

From (7) and (8) it follows that 𝐼1 is a first integral of the involutive distribution 𝒟1, and in 

particular, of 𝒟. The restriction of ω2 to the submanifold defined by keeping 𝐼1 constant is closed, 

because according to (6), 𝑑ω2 ∈ ℐ(𝑑𝐼1). Therefore, there exists a function 𝐼2 such that, locally,  

ω2 = 𝑑𝐼2 − 𝑌1(𝐼2)𝑑𝐼1.     (9) 

We can continue in this way until we have finally found a complete set of functionally independent 

first integrals {𝐼1, … , 𝐼𝑛−𝑟} of the distribution 𝒟. More details and examples on the theory of 

solvable structures and its generalizations can be consulted in [8, 9, 10, 11, 12, 13] and the 

references therein. 

3. Geometrical and analytical methods of reduction of order for ODEs. 

In this section we first review the main aspects of the analytical methods of reduction of 

order of ODEs via Lie (point and generalized) symmetries [1, 2, 3, 4]. 

3.1 Symmetry methods for ODEs. 

Let us consider an 𝑛𝑡ℎ-order ordinary differential equation of the form 

𝑢𝑛 = 𝐹(𝑥, 𝑢, 𝑢1, … , 𝑢𝑛−1),     (10) 

where 𝐹 is a smooth function defined on an open set 𝑀 ⊆ ℝn+1 and 

𝑢𝑗 =
𝑑𝑗𝑢

𝑑𝑥𝑗
, 𝑗 = 1,… , 𝑛.      (11) 

In what follows, 𝐴 ∈ 𝔛(𝑀) will be the restriction of the total derivative operator 

𝐷𝑥 =
∂

∂𝑥
+ 𝑢1

∂

∂𝑢
+⋯+ 𝑢𝑛−1

∂

∂𝑢𝑛−2
+ 𝑢𝑛

∂

∂𝑢𝑛−1
+⋯   (12) 



to the submanifold defined by equation (10): 

𝐴 =
∂

∂𝑥
+ 𝑢1

∂

∂𝑢
+⋯+ 𝑢𝑛−1

∂

∂𝑢𝑛−2
+ 𝐹

∂

∂𝑢𝑛−1
.   (13) 

It can be checked that the graph of the (𝑛 − 1)𝑡ℎ-order prolongation of any solution of (10) 

is an integral curve of the distribution ⟨𝐴⟩. Conversely, any integral curve of this distribution can 

be locally written as the graph of the (𝑛 − 1)𝑡ℎ-order prolongation of a solution of (10) [14, ex. 

1.1.2]. 

Following [2, sec. 3.4], the Lie point symmetries of (10) can be characterized as the vector 

fields  

𝒗 = 𝜉(𝑥, 𝑢)
𝜕

𝜕𝑥
+ 𝜂(𝑥, 𝑢)

𝜕

𝜕𝑢
     (14) 

such that  

[𝒗(𝑛−1), 𝐴] = −𝐴(ξ)𝐴,     (15) 

where 𝒗(𝑛−1) denotes the (𝑛 − 1)𝑡ℎ-order prolongation of 𝒗 (see [2, sec. 4.1] and [1, th. 2.36]). 

  It is well-known that the knowledge of a Lie point symmetry (14) of an 𝑛𝑡ℎ-order ODE 

(10) leads to reducing the equation to an (𝑛 − 1)𝑡ℎ-order ODE plus a quadrature. This can be done 

through canonical coordinates or differential invariants (see, for instance, [3, sec. 3.3.1 and sec 

3.3.2]): 

1. Canonical coordinates: let 𝑟 = 𝑟(𝑥, 𝑢) and 𝑠 = 𝑠(𝑥, 𝑢)  be corresponding canonical 

coordinates for 𝒗 satisfying 𝒗(𝑟) = 0 and 𝒗(𝑠) = 1. Then equation (10) reduces to an 

(𝑛 − 1)𝑡ℎ-order ODE 

𝑑𝑛−1𝑧

𝑑𝑟𝑛−1
= 𝐺 (𝑟, 𝑧,

𝑑𝑧

𝑑𝑟
, … ,

𝑑𝑛−2𝑧

𝑑𝑟𝑛−2
),    (16) 

where 𝑧 =
𝑑𝑠

𝑑𝑟
. 

In the particular case when 𝑛 = 1, then (16) can be written as 
𝑑𝑠

𝑑𝑟
= 𝐺(𝑟),       (17) 

which can be integrated by a single quadrature. 

2. Differential invariants: The first step is to find two functionally independent invariants 𝑦 =

𝑦(𝑥, 𝑢) and 𝑚 = 𝑚(𝑥, 𝑢, 𝑢1) of the first-order prolongation of 𝒗, through the characteristic 

equations of 𝒗(𝟏) (see [3, eq. (3.102)]).  Then by successive derivations 

𝑚1 ≔
𝑑𝑚

𝑑𝑦
=

𝐴(𝑚)

𝐴(𝑦)
,    𝑚𝑗 ≔

𝑑𝑚𝑗−1

𝑑𝑦
=

𝐴(𝑚𝑗−1)

𝐴(𝑦)
,  𝑗 = 2,… , 𝑛 − 1, (18) 

we obtain invariants for the 𝑛𝑡ℎ-order prolongation of 𝒗. Moreover, it can be checked that the 

invariants {𝑦,𝑚,𝑚1, … ,𝑚𝑛−1} are functionally independent, i.e., {𝑦,𝑚,𝑚1, … ,𝑚𝑛−1} is a 

complete set of invariants for 𝒗(n). Then equation (10) can be written in terms of these invariants 

as an (𝑛 − 1)𝑡ℎ-order ODE 

𝛥(𝑦,𝑚,𝑚1, … ,𝑚𝑛−1) = 0,     (19) 

where 𝑦 is the independent variable and 𝑚 is the dependent variable. If 𝑚 = 𝐺(𝑦; 𝐶1, 𝐶2, … , 𝐶𝑛−1), 

where 𝐶1, 𝐶2, … , 𝐶𝑛−1 ∈ ℝ, denotes the general solution of equation (19), then the general solution 

of (10) arises from the first-order ODE: 



𝑚(𝑥, 𝑢, 𝑢1) = 𝐺(𝑦(𝑥, 𝑢); 𝐶1, 𝐶2, … , 𝐶𝑛−1)   (20) 

which reduces to a quadrature because it admits 𝒗 as a Lie point symmetry. 

When, for 𝑛 ≥ 2, the infinitesimals 𝜉 and 𝜂 of a vector field (14) are allowed to depend on 

derivatives of 𝑢 with respect to 𝑥 up to some order 𝑙 ≤ 𝑛 − 1, we get an extension of the notion 

of symmetry, known in the literature with the name of generalized symmetries [1] (also higher-

order symmetries [3] or dynamical symmetries [2]). A generalized vector field [1, def. 5.1] 

𝒗 = 𝜉(𝑥, 𝑢, 𝑢1, … , 𝑢𝑖)
𝜕

𝜕𝑥
+ 𝜂(𝑥, 𝑢, 𝑢1, … , 𝑢𝑗)

𝜕

𝜕𝑢
   (21) 

can be prolonged in accordance with the prolongation formula [1, th. 2.36] and generalized 

symmetries can be characterized through the condition (15). 

In the calculation and use of generalized symmetries it is very convenient to consider the 

evolutionary (or characteristic) form of the generalized vector field (21), which takes the form 

𝒗𝑄 = 𝑄
𝜕

𝜕𝑢
,       (22) 

where 𝑄 = 𝜂(𝑥, 𝑢, 𝑢1, … , 𝑢𝑗) − 𝜉(𝑥, 𝑢, 𝑢1, … , 𝑢𝑖)𝑢1 denotes the characteristic of (21). The 

generalized vector field (21) is a generalized symmetry of equation (10) if and only if its 

evolutionary representative (22) is [1, prop. 5.5]. This permits to consider generalized symmetries 

of the form 

𝒗 = 𝜂(𝑥, 𝑢, 𝑢1, … , 𝑢𝑙)
𝜕

𝜕𝑢
,     𝑙 ≤ 𝑛 − 1,    (23) 

whose prolongations take a particularly simple form: 

𝒗(𝑛) = 𝜂
𝜕

𝜕𝑢
+ ∑ 𝐴𝑘(𝜂)

𝜕

𝜕𝑢𝑘

𝑛
𝑘=1 .     (24) 

 The determination of a generalized symmetry in the form (23) is done through the condition 

(15) or equivalently, through the invariance criterion [3, th. 3.5.1-1], which provides a symmetry 

determining equation for the infinitesimal 𝜂 (see [3, eq. (3.239)]). In general, it is quite complicated 

to find solutions for such determining equation. It is usual to try to find some particular solutions 

by some ad hoc ansatz, assuming that 𝜂 has a special dependency on one or more of its arguments. 

The independent variable 𝑥 is always a zeroth-order invariant of a generalized symmetry 

of the form (23). A system of higher-order invariants {𝑤1, … , 𝑤𝑛−1} for 𝒗(𝑛) can be determined 

by solving the characteristic system associated to (24), where 𝑥 is considered as a constant (see [3, 

eq. (3.298)]). 

The symmetry condition (15) implies that, for 𝑗 = 1, … , 𝑛 − 1, 𝐴(𝑤𝑗) is also an invariant 

of 𝒗(𝑛), that can therefore be expressed in terms of the complete set of invariants {𝑥, 𝑤1, … , 𝑤𝑛−1} 

in the form 

𝐴(𝑤𝑗) = 𝐺𝑗(𝑥, 𝑤1, … , 𝑤𝑛−1),    𝑗 = 1,… , 𝑛 − 1.   (25) 

In this way we get a reduction of ODE (10) to a system of (𝑛 − 1) first-order ODEs: 

{
 

 
𝑑𝑤1

𝑑𝑥
= 𝐺1(𝑥, 𝑤1, … , 𝑤𝑛−1),

 ⋮
𝑑𝑤𝑛−1

𝑑𝑥
= 𝐺𝑛−1(𝑥, 𝑤1, … , 𝑤𝑛−1).

    (26) 



The details about this procedure can be consulted, for instance, in [3, sec. 3.5.4] and [2]. 

As far as we are concerned, there are few references that actually present examples of equations 

admitting higher-order symmetries and use them to reduce the order of the equation. One of these 

examples, taken from [3], will be analyzed in the Section 4. 

3.2 Geometrical methods of reduction for ODEs. 

The problem of reducing or integrating the 𝑛𝑡ℎ-order ordinary differential equation (10) 

can be formulated in terms of the geometric notions of symmetry and Frobenius integrability [15]. 

The vector field (13) associated with equation (10) generates a trivially involutive distribution 𝒟 =

⟨𝐴⟩, that by Frobenius Theorem [15, prop. 1.59 and th. 1.60] is completely integrable. 

 The (𝑛 − 1)𝑡ℎ-order prolongation of a Lie (point or generalized) symmetry 𝒗 defines a 

symmetry of the distribution 𝒟 = ⟨𝐴⟩ in the sense of Definition 1, because the vector field 𝑌 ≔

𝒗(𝑛−1) satisfies relation (15). 

If equation (10) admits an 𝑛-dimensional solvable symmetry algebra of Lie point or 

generalized symmetries, the procedure described in Theorem 1 can be used to find by quadratures 

a complete set {𝐼1, … , 𝐼𝑛} of first integrals of equation (10), because such symmetry algebra is a 

particular case of a solvable structure (see also [9, prop. 5.5]). 

In order to do that, since the symmetry algebra is solvable, we can choose a basis such that 

the (𝑛 − 1)𝑡ℎ-order prolongations 𝑌1, … , 𝑌𝑛 satisfy (3). Let 𝛺 = 𝑑𝑥 ∧ 𝑑𝑢 ∧ ⋯∧ 𝑑𝑢𝑛−1 be the 

volume form and denote  

𝛥 = 𝑖𝑌1⋯𝑖𝑌𝑛𝑖𝐴𝛺.      (27) 

Observe that 𝛥 is the determinant formed by the coordinates of the vector fields 𝐴, 𝑌1, … , 𝑌𝑛, which 

are pointwise linearly independent. The corresponding 1-form in (5) for 𝑗 = 1 becomes 

𝜔1 =
1

𝛥
𝑖𝑌2⋯𝑖𝑌𝑛𝑖𝐴𝛺.     (28) 

By Theorem 1, ω1 is closed and hence locally exact. A corresponding primitive 𝐼1 arises by 

quadrature, and it is a first integral of 𝐴. Next, we construct the corresponding 1-form in (5) for 

𝑗 = 2. The restriction of such 1-form ω2 to the submanifold defined by 𝐼1 = 𝐶1, where 𝐶1 ∈ ℝ, is 

closed, and hence, locally exact. This permits to determine a primitive 

𝐼2̂ = 𝐼2̂(𝑥, 𝑢, 𝑢1… , 𝑢𝑛−1; 𝐶1)     (29) 

by quadrature. Replacing 𝐶1 by 𝐼1(𝑥, 𝑢, 𝑢1, … , 𝑢𝑛−1) in (29), we get a function 𝐼2 satisfying (9), 

which is a first integral of 𝐴. Clearly the process is inductive, and it can be continued until we have 

calculated a complete system {𝐼1, … , 𝐼𝑛} of first integrals for 𝐴. 

Moreover, when more symmetries than the order of the equation are known, the following 

result can be really powerful, because it allows to obtain first integrals algebraically, without any 

kind of integration [9, prop. 5.6]: 

Proposition 1. Let 𝐴 ∈ 𝔛(𝑀) be the vector field associated with equation (10). Let ℰ be an 

involutive distribution containing 𝐴. Suppose that 𝑋, 𝑌 ∈ Sym{ℰ} are transversal to ℰ and that we 

can write 𝑌 = 𝛼𝑋 + 𝑍 for some 𝑍 ∈ ℰ. Then the function α is a (possibly trivial) first integral of 

𝐴. 



 As a natural consequence, the knowledge of more extra symmetries may provide several 

first integrals without integration [9, cor. 5.7]: 

Proposition 2. Let 𝐴 ∈ 𝔛(𝑀) be the vector field associated with equation (10) and assume that 

𝑋1, … , 𝑋𝑗 are independent, non-trivial symmetries of 𝒟 = ⟨𝐴⟩. If 𝑌 is an additional non-trivial 

symmetry of 𝒟 such that 𝑌 = α1𝑋1 +⋯+ α𝑗𝑋𝑗 + β𝐴, then α1, … , α𝑗  are (possibly trivial) first 

integrals of 𝐴. 

 In Section 5, we will apply these geometrical tools and results to derive new strategies of 

integration of a third-order ODE that has been studied in [3] by analytical methods based on 

generalized symmetries.  

4. The ODE and its general solution via the analytical method. 

 We consider the third-order equation 

𝑢3 = 6
𝑢2
2

𝑢1
(𝑥

𝑢2

𝑢1
+ 1).     (30) 

This equation was introduced by G. W. Bluman and S. C. Anco in [3, eq. (3.245)] as an example 

of how to determine generalized symmetries and use them to reduce the equation. 

 The corresponding vector field 𝐴 ∈ 𝔛(𝑀) associated to equation (30) becomes 

𝐴 =
∂

∂𝑥
+ 𝑢1

∂

∂𝑢
+⋯+ 𝑢𝑛−1

∂

∂𝑢𝑛−2
+ 6

𝑢2
2

𝑢1
(𝑥

𝑢2

𝑢1
+ 1)

∂

∂𝑢𝑛−1
,   (31) 

which is defined on the open set: 

𝑀 = {(𝑥, 𝑢, 𝑢1, 𝑢2) ∈ ℝ:  𝑢1 ≠ 0}.     (32) 

 In the cited reference, the authors prove that (30) admits seven generalized symmetries (of 

first order) given, in evolutionary form, by 

𝒗1 =
1

𝑢1

∂

∂𝑢
,    𝒗2 =

1

𝑢1
2

𝜕

𝜕𝑢
,    𝒗3 = 𝑥𝑢1

2
𝜕

𝜕𝑢
,    𝒗4 = 𝑥

2𝑢1
4
𝜕

𝜕𝑢
 

𝒗5 = (9𝑥2𝑢1
2 − 12𝑥𝑢𝑢1 + 4𝑢

2)
𝜕

𝜕𝑢
,    𝒗6 = (3𝑥 −

2𝑢

𝑢1
)
𝜕

𝜕𝑢
,   (33) 

𝒗7 = (3𝑥
2𝑢1

3 − 2𝑥𝑢𝑢1
2)
𝜕

𝜕𝑢
. 

In addition, in [3] was also proved that equation (30) admits the following three 

independent Lie point symmetries: 

𝒗8 =
𝜕

𝜕𝑢
,    𝒗9 = 𝑢 

𝜕

𝜕𝑢
,    𝒗10 = 𝑥

𝜕

𝜕𝑥
,    (34) 

which span a three-dimensional, solvable Lie algebra because the respective commutations 

relationships become 

[𝒗8, 𝒗9] = 𝒗8, [𝒗8, 𝒗10] = [𝒗9, 𝒗10] = 0.    (35) 

 In [3, p. 179-181] the generalized symmetry 𝒗𝟏 defined in (33) was used to reduce equation 

(30) to a system of two first-order ODEs. The first step is to calculate a complete set of second-

order differential invariants of 𝒗𝟏. As we said in Section 3, 𝑥 is already a zeroth-order invariant. 

For the remaining ones, G. W. Bluman and S. C. Anco solved the characteristic equations for the 



corresponding second-order prolongation (24) of 𝒗1. By choosing 𝑢1 as the independent variable, 

such characteristic system becomes [3, eq. (3.304)]: 

{

𝑑𝑢

𝑑𝑢1
= 6𝑥

𝑢2
2

𝑢1
2 + 4

𝑢2

𝑢1
,

𝑑𝑢2

𝑑𝑢1
= −

𝑢1

𝑢2
.

     (36) 

After using symmetry methods for system (36), the authors found the following second-order 

invariants of 𝒗𝟏: 

w1 = 2xu1
3 +

u1
4

u2
,  w2 = u −

1

2u1
2w

1 − 2xu1.   (37) 

 It can be checked that, in this case, 𝐴(𝑤1) = 𝐴(𝑤2) = 0. Therefore, according to (26), the 

corresponding reduced system of two first-order equations becomes 

{

𝑑𝑤1

𝑑𝑥
= 0,

𝑑𝑤2

𝑑𝑥
= 0.

      (38) 

System (38) is trivial and its general solution is 𝑤1 = 𝐶1, 𝑤2 = 𝐶2, where 𝐶1, 𝐶2 ∈ ℝ. Substituting 

the expressions (37) and eliminating 𝑢2, they obtain the first-order ODE 

2𝑥𝑢1
3 + (𝐶2 − 𝑢)𝑢1

2 +
𝐶1

2
= 0.   (39) 

Solving this ODE yields the general solution of (30). Equation (39) can be written in 

explicit form as 

𝑢1 = 𝐺(𝑥, 𝑢; 𝐶1, 𝐶2),     (40) 

and it inherits a Lie point symmetry from the first-order symmetry 𝒗1 of (30), 

�̃�1 =
1

𝐺(𝑥,𝑢;𝐶1,𝐶2)

∂

∂𝑢
.     (41) 

However, working with this symmetry is not really convenient, since the expression 𝐺(𝑥, 𝑢; 𝐶1, 𝐶2) 

requires to solve (39) as a cubic equation in 𝑢1. In order to avoid this difficulty, Bluman and Anco 

determined a new Lie point symmetry for equation (39): 

�̃� = 𝑥
𝜕

𝜕𝑥
+
2

3
(𝑢 − 𝐶2)

𝜕

𝜕𝑢
.    (42) 

Applying the method of canonical coordinates, equation (39) is reduced to a quadrature. In 

particular, we can choose 

{
𝑟(𝑥, 𝑢) = −

2

3

𝐶2−𝑢

𝑥
2
3

,

𝑠(𝑥, 𝑢) = 𝑙𝑛 𝑥 ,
     (43) 

so that  

�̃� =
∂

∂𝑠
.      (44) 

Writing now (39) in terms of (𝑟, 𝑠), carrying out the quadrature and writing the resulting 

expression back to the original coordinates, the general solution of (39), and thus of (30), is 

obtained in implicit form: 



𝑢 = 𝐶2 + (
𝑢−𝐶2

𝑥
2
3

) exp (
2

3
𝐻 (

𝑢−𝐶2

𝑥
2
3

) + 𝐶3),    (45) 

where 𝐻 is a function such that  

𝐻′(𝑧) =
6𝑝(𝑧)

𝑧2−3𝑧𝑝(𝑧)+𝑝(𝑧)2
, where 𝑝(𝑧) = (𝑧3 + 3√3𝐶1(27𝐶1 − 2𝑧3) − 27𝐶1)

1

3
.  (46) 

In the integration procedure that has been applied in this section, several analytical methods 

based on symmetries have been successively used. First, the generalized symmetry 𝒗𝟏 given in 

(33) has been determined. Second, in order to find second-order differential invariants for 𝒗𝟏, 

symmetry methods have been used to find a particular solution of the characteristic system (36). 

Luckily, in this example, the reduced system (38) can be trivially integrated; however, in general, 

additional symmetries might be necessary to solve the reduced system. Third, a new symmetry 

(42) has been determined in order to solve the first-order ODE (39). Finally, the method of 

canonical coordinates has been used to integrate equation (39). As a result, the general solution of 

the ODE has been obtained in (45), although it is expressed in implicit form and in terms of a 

primitive that cannot be explicitly evaluated (see equation (46)). 

In the following section, we investigate if the application of geometrical methods to 

equation (30) can improve the results that have been obtained so far by using only analytical 

methods. 

5. Integration by geometrical methods. 

In this section we apply the geometric tools described in Section 3.2 with the aim of 

providing a more convenient expression for the general solution of equation (30): 

𝑢3 = 6
𝑢2
2

𝑢1
(𝑥

𝑢2

𝑢1
+ 1).     (47) 

As in Section 4, we consider the associated vector field (31), 

𝐴 =
∂

∂𝑥
+ 𝑢1

∂

∂𝑢
+⋯+ 𝑢𝑛−1

∂

∂𝑢𝑛−2
+ 6

𝑢2
2

𝑢1
(𝑥

𝑢2

𝑢1
+ 1)

∂

∂𝑢𝑛−1
,    (48) 

defined on the open set 𝑀 ⊆ ℝ4 introduced in (32), 

𝑀 = {(𝑥, 𝑢, 𝑢1, 𝑢2) ∈ ℝ:  𝑢1 ≠ 0}.   (49) 

 In order to achieve our objective of obtaining the general solution of (47) by geometrical 

methods, we can use some of the Lie point and first-order symmetries of the ODE given in (33) 

and (34). The integration procedure that will be presented in this section does not need to calculate 

any differential invariants nor canonical coordinates at all. 

 First, we observe that among the symmetries (33) and (34) it is possible to select three 

pointwise independent symmetries satisfying the hypothesis of Theorem 1. This can be done, for 

instance, by considering the second-order prolongations of the symmetries (34) because, according 

to (35), they span a three-dimensional, solvable Lie algebra, which is a particular case of a solvable 

structure of the distribution 𝒟 = ⟨𝐴⟩. However, since for equation (47) we know an oversupply of 

symmetries, in the next section we will apply the theoretical results presented in Section 3.2, in 

order to obtain first integrals algebraically, without any kind of integration (see Proposition 1 and 

Corollary 1). This will be done by conveniently choosing the symmetries that will be used in the 



integration process. With this aim, we choose the following symmetries (in the sense of Definition 

1) of the distribution 𝒟: 

𝑌1 = 𝒗8
(2) =

𝜕

𝜕𝑢
,

𝑌2 = 𝒗9
(2) = 𝑢

𝜕

𝜕𝑢
+ 𝑢1

𝜕

𝜕𝑢1
+ 𝑢2

𝜕

𝜕𝑢2
,

𝑌3 = 𝒗10
(2) = 𝑥

𝜕

𝜕𝑥
− 𝑢1

𝜕

𝜕𝑢1
− 2𝑢2

𝜕

𝜕𝑢2
,

𝑌4 = 𝒗2
(2) =

1

𝑢1
2

𝜕

𝜕𝑢
−
2𝑢2

𝑢1
3

𝜕

𝜕𝑢1
−
6𝑢2

2(2𝑥𝑢2+𝑢1)

𝑢1
5

𝜕

𝜕𝑢2
.

    (50) 

It can be checked that the commutator relationships become 

[𝑌1, 𝐴] = [𝑌2, 𝐴] = [𝑌3, 𝐴] = [𝑌4, 𝐴] = 0, 

[𝑌1, 𝑌2] = 𝑌1,   [𝑌1, 𝑌3] = [𝑌1, 𝑌4] = [𝑌2, 𝑌3] = 0,   [𝑌2, 𝑌4] = −3𝑌4,   [𝑌3, 𝑌4] = 2𝑌4. (51) 

 

5.1 Two first integrals without integration. 

In this section we aim to apply the theoretical results presented in Section 3.2 in order to 

obtain two first integrals of 𝐴 by an algebraic procedure, without any kind of integration. 

It can be checked that the set {𝐴, 𝑌1, 𝑌3, 𝑌4} is linearly independent on the open set 

𝑉 = {(𝑥, 𝑢, 𝑢1, 𝑢2) ∈ 𝑀:  𝑢2(3xu2 + u1) ≠ 0}.   (52) 

This implies that 𝑌1, 𝑌3, 𝑌4 are pointwise linearly independent and transversal symmetries of the 

distribution 𝒟 = ⟨𝐴⟩ on 𝑉. Consequently, they can be used as the non-trivial symmetries 𝑋𝑖 (𝑖 =

1, 2, 3) required in Corollary 1. 

 Since  {𝐴, 𝑌1, 𝑌3, 𝑌4} is a basis of 𝔛(𝑉), any additional non-trivial symmetry of 𝒟 can be 

expressed in terms of 𝑌1,  𝑌3,  𝑌4 and 𝐴. For instance, the symmetry 𝑌2 given in (50) is a transversal 

symmetry of 𝒟 that can be written as follows: 

𝑌2 = −
6𝑥𝑢1𝑢2−2𝑢𝑢2+𝑢1

2

2𝑢2
𝑌1 − 2𝑌3 +

𝑢1
3(2𝑥𝑢2+𝑢1)

2𝑢2
𝑌4 + 2𝑥𝐴.   (53) 

As a direct consequence of Corollary 1 we conclude that the following functions, corresponding 

to the coefficients of 𝑌1 and 𝑌4 in (53), are non-trivial first integrals of 𝐴: 

𝐼1 = 6𝑥𝑢1 − 2𝑢 +
𝑢1
2

𝑢2
,  𝐼2 = 2𝑥𝑢1

3 +
𝑢1
4

𝑢2
.     (54) 

These functions are defined on the open set 

𝑈 = {(𝑥, 𝑢, 𝑢1, 𝑢2) ∈ ℝ
4: 𝑢1𝑢2 ≠ 0} ⊆ 𝑀,     (55) 

and it can be checked that 𝑑𝐼1 ∧ 𝑑𝐼2 does not vanish on 𝑈, so 𝐼1 and 𝐼2 are functionally independent 

first integrals of 𝐴 on 𝑈. 

Since the coefficient of 𝑌3 in (53) is constant, the application of Corollary 1 by using the 

symmetries 𝑌1, 𝑌2, 𝑌3, 𝑌4 only provides two functionally independent first integrals of 𝐴. In order 

to complete the integration of the distribution 𝒟 = ⟨𝐴⟩, one more functionally independent first 

integral is required. Although Corollary 1 could be applied by using other sets of symmetries of 

the equation, there is not a criterion to know a priori which ones will produce non-trivial and 

functionally independent first integrals. In the worst case, it might happen that none of the admitted 



symmetries gave rise to the remaining first integral. In this situation, an alternative strategy must 

be followed. In the next subsection we illustrate how Theorem 1 can be applied to overcome this 

possible obstacle. 

5.2 A remaining first integral and the general solution of equation (47). 

 Besides the first integrals 𝐼1 and 𝐼2 given in (54), one more functionally independent first 

integral of 𝐴 is required in order to complete the integration of equation (47). In order to determine 

such first integral, we first observe that the distribution ℰ = ⟨𝑌3, 𝑌4, 𝐴⟩ is involutive by commutator 

relationships (51). Moreover, since 

A(I1) = Y3(I1) = Y4(I1) = 0,     (56) 

we conclude that I1 is a first integral of ℰ.  

Consider the following local change of variables on the open set U defined in (55), 

φ: U          ⟶ φ(U)

(x, u, u1, u2) ⟼ (u, u1, u2, I1).
     (57) 

By means of the push-forward by φ (see [18, pg. 46]), the vector fields A, Y4, Y3 are expressed in 

terms of local coordinates (u, u1, u2, I1) as follows: 

Â = φ∗A = u1
∂

∂u
+ u2

∂

∂u1
+
u2
2(2uu2+I1u2+5u1

2)

u1
3

∂

∂u2
,

Y3̂ = φ∗Y3 = −u1
∂

∂u
− 2u2

∂

∂u2
,

Y4̂ = φ∗Y4 =
1

u1
2

∂

∂u
−
2u2

u1
3

∂

∂u1
−
2u2

2(2uu2+I1u2+2u1
2)

u1
6

∂

∂u2
.

   (58) 

We can restrict each one of the previous vector fields to the submanifold defined by the 

level set I1 = C1, where C1 ∈ ℝ, by substituting I1 by C1 in (58). We keep denoting the restricted 

vector fields by Â,  Y3̂ and Y4̂ respectively. 

By using (51), it can be checked that Y3̂ and Y4̂ span a 2-dimensional, solvable Lie algebra 

of symmetries of the distribution �̂� = ⟨Â⟩. In particular, they generate a solvable structure for �̂�. 

In order to apply Theorem 1, we consider the non-zero 3-form Ω = du ∧ du1 ∧ du2 and construct 

the corresponding 1-form given by (5) for j = 1: 

ω1 =
1

iY4iY3iAΩ
iY3iAΩ =

= −
1

2uu2+C1u2+u1
2 (2u2du +

2uu2+C1u2+3u1
2

u1
du1 −

u1
2

u2
du2) .

  (59) 

Theorem 1 ensures that (59) is closed and, therefore, locally exact. A primitive of ω1, and hence 

a first integral of Â, can be obtained by quadratures: 

J3̂ = ln (
u2

(2uu2+C1u2+u1
2)u1

),      (60) 

Thus, the following function 

J3 = exp(−Ĵ3) = (
u1
2

u2
+ 2u + C1) u1      (61) 

is also a first integral of Â. Substituting now C1 by I1 in (61) and writing the obtained expression 

back in terms of (x, u, u1, u2), we obtain a function I3 ∈ 𝒞
∞(U) given by 



I3 = 3xu1
2 +

u1
3

u2
,       (62) 

which is a first integral of A. It can be checked that I1, I2 (defined in (54)) and I3 are functionally 

independent on U, since dI1 ∧ dI2 ∧ dI3 does not vanish on U.  

Therefore, the general solution of ODE (47) can be implicitly defined by equations I1 =

C1, I2 = C2, I3 = C3, where C1, C2, C3 ∈ ℝ: 

{
 
 

 
 6xu1 − 2u +

u1
2

u2
= C1,

2xu1
3 +

u1
4

u2
= C2,

3xu1
2 +

u1
3

u2
= C3.

     (63) 

 In order to obtain a parametric expression for the general solution of ODE (47), we 

eliminate u2 from the last equation in (63) and choose u1 = t as a parameter: 

{
x(t) =

C3t−C2

t3
,

u(t) =
−C1t

2+4C3t−3C2

2t2
.
     (64) 

We depict the graphs of two of the solutions in Figures 1 and 2, obtained by setting different values 

to the integration constants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Concluding remarks. 

Different analytical and geometrical methods have been applied in the study of a third-

order ODE for which abundant Lie point and generalized symmetries had been previously 

reported.   

Regarding analytical methods, a generalized symmetry of the equation had been used in 

the previous literature to reduce the given ODE to a system of two first-order ODEs. In this 

Figure 1: 

𝐶1 = 10, 𝐶2 = 0, 𝐶3 = −1, 0.5 ≤ 𝑡 ≤ 10. 

Figure 2: 

𝐶1 = −21, 𝐶2 = −5,𝐶3 = 7, 0.5 ≤ 𝑡 ≤ 10. 



reduction process, additional symmetry methods had been necessary to determine differential 

invariants for the generalized symmetry. After solving the reduced system, it remains the problem 

of reconstruction of the solution for the original equation. Although theoretically this can be done 

by a quadrature, the difficulty of obtaining an explicit expression for the underlying symmetry (41) 

forced the search of a new symmetry (42). After application of the canonical coordinates method, 

the implicit general solution (45) was finally obtained. However, this expression involves a 

primitive that cannot be explicitly evaluated.  

In this work we have shown that the application of geometrical methods greatly simplifies 

the integration of the given third-order ODE. Remarkably, two functionally independent first 

integrals of the equation have been calculated by simple algebraic manipulations, avoiding the use 

of differential invariants, canonical coordinates or any kind of integration. Moreover, a remaining 

first integral has been calculated by quadrature, as a primitive of a 1-form defined in an open set 

of a three-dimensional space.  From the complete system of first integrals of the equation derived 

by using these geometrical tools we have obtained the general solution of the equation in 

parametric form (see equation (64)). The obtained solution is given in terms of simple rational 

expressions, greatly improving the solution (45) derived via the analytical procedures.  

It can be concluded that the geometrical approach to integrating ODEs is a powerful 

alternative to the classical approach of differential invariants or canonical coordinates, specially 

when there are higher-order symmetries involved. An additional advantage that must be taken into 

account is that the geometrical methods allow us to use not only symmetries of the associated 

distribution, i.e., not only prolongations of Lie (point or generalized) symmetries of the equation. 

In a solvable structure, only the first element must be a symmetry of the associated distribution 

while, in general, the remaining vector fields are not symmetries of the equation. This fact greatly 

expands the strategies that can be followed to find exact solutions of differential equations. 
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