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Abstract. This work is devoted to studying the non-existence of the global-in-time solutions for the Korteweg-
de Vries-Burgers equation including Hilfer time fractional differential operator which in particular cases of the
parameters follows the classical and other time-fractional Korteweg-de Vries-Burgers equation. Applying the
method of nonlinear capacity which was suggested by S.I. Pokhozhaev for some initial-boundary value problems, it
has been obtained sufficient conditions for the non-existence of global solutions.
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Depeanckutl 20Cy0apCmeEeHHbll YHUBEPCUMem
Depeana, Yzoexucman

Annomayun. Hacmoswas paboma noceésujena uzyvenuro omcymemeus 2100a1bHbIX N0 8peMeHU pelleHull
ypasuenusi Kopmegeea-oe @pusa-Biopeepca, sxmouarouezo 0pobHo-oupgepenyuanvuviti onepamop I'unvpepa no
8peMeHU, KOMOPbIll 8 YACMHBIX CAYYAAX NAPAMEMPO8 ciedyem KIACCULeCKOMY U Opyeum OpoOHbIM NO épemeHU
ypasnenuam Kopmeegeea-biopeepca. ypasmnenue oe ®pusa-bropeepca. Ilpumenss memoo HenuHeliHOU emMKOCmu,
npeonodscennviti C.H. Iloxoorcaesvim 051 HEKOMOPBIX HAYAIBLHO-KPAEBbIX 34044, NOJyYeHbl 00OCMAMOYHble YCl08Us
omcymcmeus 2100a1bHbIX peteHull.

Kntouesvie cnosa: npouszsoonas I 'unvghepa, memoo HenuHeliHol eMKoCmu, OMCymcmesue peueHus.

1. PRELIMINARIES. In this section, we give some basic concepts of fractional calculus.
Definition 1.1. [1] Let f L([a,b]) . The following integrals

I;[f](t):r—a)_t[(t—s)a_lf(s)ds (1.1)
and
I;‘[f](t):%a).t[(s—t)a_l f (s)ds (12)
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are called the left-sided and the right-sided Riemann-Liouville integrals of the fractional order
a >0, respectively, where T(Z) denotes the Euler’s gamma function.

Definition 1.2. The Riemann-Liouville left-sided fractional derivative D; f of order
a(0<a <1) is defined by

D;[f](t)zilﬁ[f](t): 1 Ej[(t—s)_“ f(s)ds. (1.3)
dt I(l-a)dt;

Definition 1.3. The Riemann-Liouville right-sided fractional derivative D f of order

(0 <o <1) is defined by

Dg’[f](t):—% I§“[f](t):—r(ll_a)%j.(s—t)_“ f(s)ds. (1.4)

Definition 1.4. The Hilfer derivative D:;ﬂf of order O<a <1 and type 0<pB<1 is
defined by

D2/ [](8) = 125 S [ £](1) (L5)

where 17, , o > 0 is the Riemann-Liouville fractional integral.
The Hilfer derivative was introduced in [2], [3]. These references provide information
about the applications of this derivative and how it arises. It is easy to see that this derivative

interpolates the Riemann-Liouville fractional derivative (ﬂ =0) and the Caputo fractional
derivative (,B =1) (see [1]).
The fractional integration by parts is defined as follows.

Lemma 1.1. Le a>0,p>1,0>1 and l+1£1+a (p¢1 and 0#1 in the

P qQ
case £+1:1+a). If pe Lp(a,b) and WeLq(a,b),then
P qQ
b
[o(t)12 [y](t)dt _jy/ ' [p]dt. (1.6)

a
2. NON-EXISTENCE OF THE SOLUTION OF TIME-FRACTIONAL
KORTEWEG-DE-VRIES-BURGERS EQUATION

Let denote by I1,, a rectangular domain of R?, iell Z{(t,x)e R*:0<t<T,

a<x< b}. In the domain 17, we consider the time-fractional Korteweg-de Vries-Burgers
equation

Dy fu(t, x) +u(t, x)u, (t,X) + U, (t,X) =vu, (t,X) (2.1)
with the following initial condition
1775u(0,x) =u,(x), xe[a,b], (2.2)

where D;’;'B is the Hilfer derivative of order O <a <1 and type 0< B <1 with respect to t,

v>0and U, (X) is a given function.
If g =1 then the equation (2.1) takes the form which studied in [4]. And when g =1 and
a =1 it becomes the classical Korteweg-de Vries-Burgers equation [5]. We should note the
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Korteweg-de Vries-Burgers equation can be applied as the mathematical model for many real-
life processes [5].

Our aim is to investigate blow-up solutions of the problem (2.1)-(2.2). To do this we apply
the method of nonlinear capacity. This concept for analyzing blow-up of solutions nonlinear
equations was suggested by Pokhozhaev in [6].

We consider a class ®(Ha,b) of test functions ¢ (t,X), defined on the domain 17,

with arbitrary parameters T > 0, a,b € R, have the following properties:
) PPu P €C(1,y);
Gy ¢,20in11,,;
@iy 1/%%p(xt)=0att=T and xe(ab);

w )= [ <o,

where L »= I (1 ﬂ)(l_ )Dl_ﬂ(l_a)¢ + V@, — Py -

Tt
Suppose that there exists an T >0 for which weak solution of the problem (2.1)-(2.2)
satisfying u,,., DgJu e C([a,b]x[0,t]).

By multiplying the equation (2.1) by a test function @ € ®(Ha,b) and then integrating
over 17, obtained equality, we get
” @(t,x) Dy Au(t, x)dtdx+“ e (t,x)u(t,x)u, (t,x)dtdx+
+J'J' (p(t, X) Uy (T, X) dtdx = v H (p(t, X) Uy, (t, x)dtdx - (2.3)
Applying the Z:Ie of integration by parts,ﬂiatbis easy to obtain the following equalities

[[ o(t.x)u(t,x)u, (t,x)dtdx =

:%_T([UZ (t, X)(D(t, X) |gdt—%;£:[u2 (t, X)(PX (t, X)dtdx ’ (2.4)

[] o(t.x)u, (t,%)dtdx:

T

= [u. )t x)-u(t )0, (t3)]

0

“dt- [Jutx)e. (1 x)dox, (29

[ @ (t.x)u, (t.x)dtdx =

T
_[[(Duxx -ou, +o,U

0

b
dt— t, t,x)dtdx . 2.6
I, jj(p( x)u (t, x)ditclx (2:6)
Using Definition 1.4 and applying Lemma 1.1, we have

o(t,x)DgAu(t, x dtdx— o(t,x)17¢ I(l’ﬂ)(l"")u t,x)dtdx =
na,b

0+,t 0+

0+

- ” |/ I(l‘ﬂ)(l“" u(t, x)dtdx.

Hence, applying the rule of mtegratlon by parts and using Lemma 2.1, we obtain
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” o(t,x) Dgfiu(t,x)dtdx:}{lgif(l D (t, x) 174 o4, x)} dx —
yp

—ﬂ — | ) (- 'B)(l’“)u(t, X ) dtdx =

b
[0 () 1S o, X)} : 12690 (t, X) ditdx .

Taking this and equalizes (2.4), (2.5) into account and also using Definition 2.3, from (2.3)
we drive

dx — “' u(t,x) 190

_H (t,X) g, (t, x) dtdx = — ” u(t, x)(Le)(t,x)+

+T{ (P (1, 0) 1 1, )]

a

dt, (2.7)

de+£B(u(t,x),(p(t,x))2

where
B (u (t,x), o(t, x)) = %uz (t.x)o(t,x)—vu, (t,x)@(t,x)+vu(t,x) e, (t,X)+
o(t,X)u, (t,X) =0, (t, X)u, (t,X)+ @, (t,X)u(t,x).
Taking (2.2) and (iii) property of test functions, from the last we get
b
dt—

%]ﬂ u®(t,x) e, (t, x)dtdx = —H u(t,x)(Le)(t, x)dtdx+1' B(u(t,x),o(t,x)) i

—_[u g (x,t)dx. (2.8)

By applying Hélder and Young s inequalities, it is easy to see that

ﬂ (t, %) Jo, (x.1) thd

12

[Uuz(t,x)gox(t,x)dtdx} _U( )dtdx <

_U tx L(o txdtdx

2

—” (t. ), (t,x)dtdx+= J‘J‘Mdtdx,

o, (x.1)
Taking this inequallty and (iv) property of test functions into account from (2.8), we have

1 T b b >
OSEé’(ﬂa,b)+IB(u(t,x),(p(t,x))adt—J‘uO(x)]Tﬁ(i Jo(x,1)|odx. (2.9)
0
The following theorem is valid:

a
Theorem 3.1. Suppose that the boundary conditions and the initial function
Uy (x) € L[a,b] satisfy the following assumption: there exists a function ¢(x,t)e @(11,,) such

b
that B(u(t,x),(t,x))|_ €L[0,T] and the following inequality

a

b b
adt—j o () I 0 (x,1)| Lodx <0, (2.10)

a

1
Eg(na,b)_‘_

B(u(t,x),(p(t,x))

O e, —
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Then problem (2.1)-(2.2) does not admit a global-in-time solution in Ha,b with these

initial and boundary conditions.
Proof. Let us assume the opposite i.e. the problem (2.1)-(2.2) admits a global-in-time

solution in Ha’b . Then we arrived at contradiction by virtue of inequalities (2.9) and (2.10).
Now, we consider the fractional Korteweg-de Vries-Burgers equation (2.1) with v =1 in
the rectangular domain 77, ={(¢,x)e R*:0<¢<T,0<x <1} with the initial condition (2.2)

and the following boundary conditions
u(t,0)=7,(t), u,(t,0)=7,(t), 0<t<T, (2.11)

where 7, and 7, are given functions such that z,,7, € L[O,T].
Multiply the time-fractional Korteweg-de Vries-Burgers equation (2.1) by a test function
pe @(Ha‘b) , after some calculations and simplifications we obtain

1

0< %4’(170’1)+_T.‘B(u(t,x),(o(t,x)) édt_j”o (x)]ff{a)go(x,t)hzodx :

We take a test function satisfying the following boundary conditions:
p(t1)=0, ¢, (t,1)=0, 0<t<T, (2.12)

Then,

B(u,0) ;:-Eﬁ (V-1 (t)}p(t,o)-q(t)% (t.0).

In this case, the following theorem is valid:
Theorem 2.2. Let the initial-boundary problem (2.1), (2.2), (2.11) be such that there exists

a test function (pECD(IYM) satisfying the boundary conditions (2.12) and also the following

inequality

1

55(170,1) < H% 72 () p(t,0)—7,(t)p(2,0)+ 7, (¢) o, (2, O)} dt +

1
+J.u0 (X) 175 (x,t)] o dX. (2.13)
0
Then the problem (2.1), (2.2), (2.11) does not admit a global-in-time solution in HO,l'
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