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Abstract: A two-point nonlinear boundary value problem for a second order system of ordinary integro-
differential equations with impulsive effects and mixed maxima is investigated. By applying some transformations is
obtained a system of nonlinear functional integral equations. The existence and uniqueness of the solution of the
nonperiodic two-point boundary value problem are reduced to the one valued solvability of the system of nonlinear

functional integral equations in Banach space PC([O,T],R”). The method of successive approximations in

combination with the method of compressing mapping is used in the proof of one-valued solvability of nonlinear
functional integral equations.
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Annomayusn: Hccnedyemcs 0gyxmoueunass HeluHeUHAs Kpaesasi 3a0aua Oasi cucmemvl OObIKHOBEHHbIX
uHmezpo-oudepeHyuanbHbIX YPAGHEeHULl 8MOPO20 HNOPAOKA C UMNYIbCHOIMU dpdexmamu U CMeuaHHbIMU
maxkcumymamu. Ilymem npumeneHus HEKOMOPLIX NPeoOPA306aHull  NOLYYAEMCs  CUCIEMA  HeTUHEUHbIX
DYHKYUOHANbHBIX UHMeSPAlbHbIX YpasHenuti. Cyuecmeosanue u eOUHCHMEEHHOCb peuenus Henepuooudeckol
08YXMOUYEUHOU Kpaegoll 3a0aull C800AMCs K 0OHO3HAYHOU PA3PEUUMOCHU CUCTNEMbl HETUHEHbIX (DYHKYUOHATbHBIX

. n
unmezpanvuvix  ypaswenuti 6 Banaxosom npocmpancmse PC ([O,T],]R ) Memoo nocnedosamenvHbix

NPUOUdICEHUT 8 COYEMAHUU C MEmOOOM CHCUMAIOWUX OMOOPAdICEHUTI UCNONb3YeMCs. Npu 00KA3AMeNbCmae
00HO3HAYHOU PA3PEUUMOCIU HETUHETIHBIX (YYHKYUOHATTbHBIX UHMESPANbHBIX YPAGHEHUIL.

Knrwouesvle cnosa: cucmema 6mopozo nopsaoka, UMHYIbCHble UHmezpo-Oughgepenyuanvhvie ypaeHeHus.,
08yXmoueunvle HeluHelHble Kpaesble YCI06Us, CMEWlaHHble MAKCUMYMbl, NOCAe008amenbHble NPUOTUICEHUS,
cywecmeoganue u eOUHCMEEHHOCHb PeuleHUs.
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1. Introduction.

Mathematical model of many problems of modern sciences, technology and economics are
described by differential and integro-differential equations, the solutions of which are functions
with first kind discontinuities at fixed or non-fixed times. Such differential and integro-differential
equations are called equations with impulsive effects. A lot of publications of studying on
differential and integro differential equations with impulsive effects, describing many natural and
technical processes, are appearing (see, for examples, [1-20]. Two-point and multi-point boundary
value problems for the differential and integro-differential equations are studied by many authors
(see, for example [21-24]. Second-order differential equations with nonlocal boundary value
conditions and impulsive effects are almost not studied. The fact is that the reduction of such a
problem to an equivalent functional integral equation has difficulties. In this paper, we investigate
a two-point nonlinear boundary value problem for a system of second order integro-differential
equations with impulsive effects, nonlinear kernel depending on construction of mixed maxima.
The questions of existence and uniqueness of the solution to the nonlinear two-point boundary
value problem are investigated. We note that the differential and integro-differential equations
with mixed maxima have singularity in studying of the questions of solvability. Moreover, the
jumpiness of solutions is a natural thing for differential equations with mixed maxima [25].

On the interval [0,T] for t=t;, 1=12,..,p we consider the questions of existence and

constructive methods of calculating of the unique solutions of the second order system of nonlinear
ordinary integro-differential equations with impulsive effects and maxima

;
X'(t) = f [t, X(t), | @(t,s, max {x(z)|z € [4,(s) I AQ(S)]})ds], (1)
0

where t=t, 1=12,..,p, 0=ty <t <..<ty <tp,; =T, xe X, X isthe closed bounded

domain in the space R", f(t,x,y)eR", 0<4(t)<T, i=12,

;
[ () 1 A (0] = min {4 1), 4, (0)}; max { 4,(1), 2, )} ], 51‘%” O(t,s,x)|ds <oo.
-0

The equation (1) we study with nonlinear conditions

AL (t)X(07) + By (t)X(T ™) =Cy (&, x(1)), (2)
A, (1)X'(07) + B, (t)X'(T7) =C(t, x(1) (3)

and nonlinear impulsive effect
X(67)-x(t) =R (x(t)), i=12..p, (4)
X(6)-x () =6Gi(x(t)), i=L12..p, 5)
where A;(t), B;(t) are nxn-dimensional matrix-functions, C;(t,x(t)) e R" is nonlinear
vector-function, =12, F.G eR", 0<A4(t)<T, i=12, x(ti*)z lim x(t; +v),

v—0*

x(ti_): lim x(t; —v) are right-hand side and left-hand side limits of function x(t) at the point

v—0~

t =t;, respectively.

C ([O,T], ]R”) is the notation of the Banach space, which consists continuous vector function



X(t), defined on the segment [0,T], with the norm

n
||X||‘J§Q%\Xj(t)\-

PC ([O,T],R”) is the notation of the following linear vector space

PC([O,T],R”)z{X:[O,T]—>R”; X(t) <C((t 0], R"), i=1..., p},
where x(ti*) and x(ti‘) (i=0,1,..., p) existand are bounded,; x(ti‘):x(ti ) Note, that the

linear vector space PC ([O,T], R”) is Banach space with the following norm

X = max{] %l 1 =22 P}

2. Formulation of problem.

To find the function x(t) e PC([0,T],R"), which for all te[0,T], t+t, i=12,..,p
satisfies the second-order integro-differential equation (1), nonlinear two point conditions (2), (3)
and for t=t; i=12,..,p, O<t; <t, <..<t, <T satisfies the nonlinear limit conditions (3), (4).

3. Reduction to nonlinear system of functional integral equations.

Let the function X(t) e PC([O,T],R”) is a solution of the second order boundary value

problem (1)-(5). Then, integrating the integro-differential equation (1) one time on the intervals:

(0.4] (tto]. -, (tp,tpﬂ] we obtain:
Y

Y
j f(x)ds = j X"(s)ds = X'(t7) - X'(0%), te(0,t],
0

0
Tf(s)ds=Tx"(s)ds (1 )-x (), te(bt],
t f
T

j f(s)ds = I x”(s)ds:x’(tgﬂ)—x'(t;), te(tp,tpﬂ]

tp

where for convenience, we put
f(t)="1 t,x(t),}ta(t,s,max{x(r)he[ﬂl(s),ﬂg(s)]})ds .
Hence, taking x'(0") = X'(0), x'(tok;l):x'(t) into account, on the interval (0,T] we have
J 1t (0" xtt)x( )]+ [r00-(5)] -
=X~ (1) =% (1) || X (6 )X (&2) |-~ ¥ (1) - (to) |+ ¥ .

Taking into account the condition (5), the last equality we rewrite as



X'(t) = x(0)+jf(s)ds+z H(x(8)). (6)

O<t;<t
We subordinate the function Xx'(t) e PC ([O,T],R”) in presentation (6) to satisfy the
nonlinear two-point boundary condition (3)

X'(T) = x(0)+jf(s)ds+ > Gi(x(t)). (7)

O<t;<T
Substituting (7) into condition (3), we find x'(0) as follows:

x'(0)=Q3 (t){ 2(t x(t)) - Bz(t)jf(S)dS B,(t) D Gi(x(t )} (8)
O<t; <T
where detQ,(t) =0, Q,(t) = A,(t)+B,(t).
Substituting (8) into presentation (6), we obtain:

X’(t)=Q21(t)[ (6, X(1) B (t)j f(8)ds—B,(1) > Gi(x(t )]+

0<t;<T

jf(s)ds+ > G (x(t)). (9)

O<t; <t
Then, integrating mtegro -differential equation (9) one time on the intervals

(O] (tto].- ., (tp tp+1] and taking x'(0") = X'(0), x'(t,;) = X'(t) into account, on the interval
(0,T] we have
IQz (S){ 2(8,X(8)) - Bz(S)Jf(é’)dH B, (s) Z Gi (x(t )]ds+

O<t;<T

j[jf(e)dm Z G, (x(t )]ds

:[X(tl)—X(O*)J+[X(t2)—X(tfﬂ+...+[x(t)—x(t;)} =
=x(0) | x(t ) ~x(t) |~ [ x(t5 ) - x(t2) | -~ x(t5) - x(t5) |+ xC). o)

Taking into account the nonlinear impulsive condition (4), from the last equality (10) we
derive

X(t) = x(0)+IQ2 (s){ 2(8,X()) ~ Bz(s)jf(e)de B,(s) > Gi(x(t )]ds+

O<t;<T

j[ff@d“ 2. Gi(x(t )]ds+ > R(x(t)) (11)

ol o O<t;<s O<t; <t

Applying the two-point nonlinear condition (2) to the equation (11), we find the value of
x(0) as follows:



.
x(0) = QIl(t)C1(t, X(t)) — IQIl(t) Bl(t)QEl(S)C (5, X(s))ds +
0
p T
+ j Qi (HB.(1)Q3'(5)B, (9) f £ (6)dods +

jol (DB Q2 (9)B(5) X Gi(x(t))ds - Q;l(t)Bl(t)j j f(6)dods -

O<t; <t

-Qr (t)Bl(nj > Gi(x(t))ds Q' (B (1) Y. Fi(x(t)) (12)

0 O<tj<t O<t;<t
In getting (12), we used well known formulas, which connected by the name of Dirichlet:

T s T T
g(t,s)| f(8)dads=| f(s)| g(t,8)dads,
fouof 1]

Jg(t $) D li(x(t))ds= ].g(t,s)dsli(x(ti)).

O<tj<t 0<ti<T g,

Then, we rewrite (12) as follows

)
X(0) = Q(OC, (¢, x(1) - j Vo(t,SIC 5 (s, X($))ds +

jvl(t s)f(s)ds+ > Vit )G (x(t))-Qr MB() > Fi(x(t)) (13)

O<t;<T O<t;<T

where Vo (t,5) = Q7 (t)By(1)Q5'(s), detQi(t)#0, Qu(t)=A(t)+By(b),

]
Vi(t,s) —Qll(t)Bl(t)[ | Qzl(e)[Az(eHsz(e)]de}.

Substituting (13) into presentation (11), we obtain final view of nonlinear system of
functional integral equations:

)
X()=3(6:X) = QA 1)C, (1, X)) + [Wo(t, SIC (s, X(5))ds +
0

T T
+jw1(t,s)f [s, X(s), j ®(s,6, max {x(r)|r e[ﬂl(e),ﬂz(ﬁ)]})dé?]ds+
+ WG (X(6))+ D Wat)F (x(t)), (14)

0<t;<T O<t;<T
where
Vy(t,s), t<s<T,

Wolt.s) = {—Vo(t, $)+Q54(s), 0<s<t,



Vi(t,s), t<s<T,

Wi (t,s) = ¢ ¢
PV 9) - [Q21(0) Bo(0) 40+ [ Q71 (0) [ A4(6) + By(0)]d6, O <5 <t,
0 s

—Q;Y(s)By(s), t<s<T,
Wz()—{ A B
Q1 (s)A(s), 0<s<t.

3. One valued solvability.
Theorem. Suppose that the following conditions are fulfilled:

f (t,O,}@(t,s,O)ds]

1). M; = max
0<t<T

N

<0} Mc =5Q&XT\cj(t,0)\<w, j=1,

3). Forall te[0,T], x,y €R" holds
(X, Y1) = (6 X0, Y2) | S My () X = %o [+ Mo ()] yo = Y2 |;
4). For all t,s [0, T]?, x e R" holds
O(t,5,%) —O(t, 5, X)| < M3 (t,8)| X — X, [;
5). Forall te[0,T], xeR" holds
\cj(t,xl)—cj(t,xz)\s|v|4j(t)|xl—xz|, i=12;
6). Forall xeR", i=0,1,...,p hold
RO~ RO <my [ X =% [, [Gi(4) =Gi(x2)| <myi | X — %, |3
7). p=y1+...+ x5 <1, where y,..., x5 are defined by the formulas (18)-(20) below.
Then the two-point boundary value problem (1)-(5) has a unique solution

X(t) e PC ([O,T], R" ) This solution can be founded by the following iterative process:

Ko\ 100 oK1y |
{X (t)_J(t,X ), k=1,2,3,... (15)

x?(t)=0, te(t,tyy), i=012,..,p.
Proof. We consider the following operator
J: PC([O,T]; R”)—> PC([O,T]x R“),
defined by the right-hand side of equation (14). Applying the principle of contracting
operators to (14), we show that the operator J , defined by equation (14), has a unique fixed point.

Taking first and second conditions of the theorem, for the first difference of the
approximations (15) we have the following estimate

.
H x1(0) = x°(1) Hséﬂt""é‘ Qi (t) H C,(t,0) ‘+5L1ngI|WO(t,s) || C(t,0)|ds+
T 0

f [s,O,}@(s,&,O)deJ

ds +
0<t<T

.
+ max I[\Nl(t,s)|
0




+ max Z|W1(t )| Gi (0) |+Z|W2(t IEOIE

0<t<T i1

where

;
0 = max j Wy (t,s) |ds, oy = max E[|W1(t,s)|ds,

O12 = MaX Z:|W1(t ), op= Z|W2(ti)|-

<t i=1

Then, by the third - sixth conditions of the theorem, for difference of arbitrary consecutive
approximations and arbitrary t e (t;,t;,;] we have

| x| < max | Q) M O] x O -x* ) |+

+maxI|W0(t s)|M42(s)‘x (s)—xX 1(s)‘ds+
+ max £ WAt )| Ma()| x* ()= x*(s) |+
;
+M2(S)IM3(S,H)‘xk(H)—xk‘l(Q)‘dQ ds +
0
+ max Z:|W1(t )| my; ‘Xk(ti)—xk_l(ti)‘+Zp:|W2(ti)|m1i ‘Xk(ti)—xk_l(ti) :
i1

0<t<T <

Hence, by the introduced norm in the space PC([O,T], R") we obtain

0] <o -0, )
where p= 1 +...+ 15,
.
1= max ‘ Q' () ‘ M (1), 22 =(§2&>§I|Wo(t’5) My, (s)ds, (18)
g = Max I|W1(t s) 1(s)+|\/|2(s)j|\/|3(s 0)do |ds, (19)
Xa=max, Z[Wl(t )My, x5 = Z:|W2(t )| my;. (20)
i=1

According to the last condltlon of the theorem, we have p <1. Therefore, from the estimate
(17) follows that



[0-xt0] | o2, @
It implies from (21) that the operator J on the right-hand side of the equation (14) is
contracting. According to fixed point principle in the Banach space PC([O,T], R”) and taking

into account estimates (16), (17), we conclude that the operator J has a unique fixed point.
Consequently, the two-point nonlinear boundary value problem (1)-(5) has a unique solution

x(t) € Pc([o,T],R”).
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